
ALMcss: Separación de estructura
y presentación en la web mediante
posicionamiento avanzado en CSS

César Fernández Acebal

Universidad de Oviedo
Departamento de Informática

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

ALMcss: Separación de estructura y
presentación en la web mediante
posicionamiento avanzado en CSS
ALMcss: Separation between Structure and Presentation
on the Web with CSS Advanced Layout

César Fernández Acebal

Universidad de Oviedo
Departamento de Informática

Tesis Doctoral presentada el 19 de marzo de 2010 para la obtención del
título de Doctor por la Universidad de Oviedo (Doctor Europeo).

Dirigida por:

• Prof. Dr. Juan Manuel Cueva Lovelle (Universidad de Oviedo)
• Dr. Bert Bos (W3C)

Resumen
Desde el nacimiento de la web, y más concretamente con la apari-
ción del primer navegador gráfico, los diseñadores web siempre han
estado intentando mejorar la apariencia de las páginas, aun cuando
eso llevase a ciertas perversiones en el uso de los estándares (o a no
usarlos en absoluto). Las hojas de estilo (Cascading Style Sheets, o
CSS) surgieron como un modo de devolver el HTML a su inten-
ción original, es decir, como lenguaje de representación de docu-
mentos estructurados. Hoy, trece años después de que apareciese la
primera especificación de CSS definida por el W3C, las hojas de es-
tilo se han convertido sin duda en una realidad ampliamente acep-
tada por la comunidad de diseño web, y todos los navegadores mo-
dernos las implementan razonablemente bien. Sin embargo, si bien
es cierto que CSS ha logrado sacar fuera del HTML toda la informa-
ción de estilo asociada a un documento, aún hay muchos sitios web
que siguen utilizando tablas HTML para definir la maquetación. Y
aun cuando se emplean diseños sin tablas y la maquetación se hace
completamente con CSS, el marcado suele ser dependiente del as-
pecto final deseado.

El problema es que aunque CSS permite, en teoría, lograr cual-
quier diseño, lo cierto es que hay tareas que, por su cotidianidad, de-
berían ser triviales, y que sin embargo con las actuales capacidades
de posicionamiento del lenguaje resultan demasiado complejas o in-
cluso, en ocasiones, sencillamente no son posibles. Esta tesis sostie-
ne que, por tanto, la prometida separación de presentación y conte-
nido no se cumple, y que ello es debido a una ausencia de mejores
herramientas de posicionamiento que hagan de CSS un verdadero
lenguaje de maquetación.

Así pues, en la tesis se propone un nuevo mecanismo de posic-
ionamiento para CSS, que ha sido desarrollado en el seno del Gru-
po de Trabajo de CSS del W3C (W3C CSS-WG), del que el autor
de esta tesis y uno de sus directores son coautores: el CSS3 Tem-
plate Layout Module. Tomando como base la teoría clásica de dise-
ño gráfico de los grid systems, proporciona un marco para posicionar

i

elementos en cualquier lugar de la página, independientemente de
cuál sea el lugar que ocupen en el documento de origen. Además,
permite que la maquetación se defina ahora de manera explícita, a
un nivel de abstracción mucho más alto que con las propiedades de
posicionamiento de bajo nivel que proporciona el lenguaje en la ac-
tualidad, con las que la maquetación (layout) es sólo implícitamente
definida por las complejas interacciones que tienen lugar entre di-
chas propiedades, aplicadas individualmente a cada elemento de la
página. Como se demuestra en la tesis, esto proporciona varias ven-
tajas sobre la forma actual de diseñar con CSS:

• Facilidad de uso
• Se provee un mecanismo de reordenación del contenido
• Los diseños son automatizables por una herramienta

A través de varios ejemplos y casos de estudio, la tesis demuestra
cómo la solución propuesta permite una mayor separación entre la
presentación y el contenido. O, más concretamente, entre la estruc-
tura del documento y su maquetación. Por último, se presenta un
prototipo, llamado ALMcss (Advanced Layout Module for Cascading
Style Sheets) que implementa dicha solución en los navegadores web
actuales.

ii

Abstract
From the beginning of the web and, more specifically, with the ad-
vent of the first graphical browser, web designers have been trying
to improve the general appearance of their pages, even if it led to
certain perversions in the use of standards —or to not using stand-
ards at all. Cascading Style Sheets (CSS) was born as a way to return
HTML to its original inception (that is, as a language to represent
structured documents), promoting a separation between present-
ation and content. Today, thirteen years after the W3C invented
CSS, it has become a reality widely accepted by the web design com-
munity and well supported by all modern browsers. But, although it
has achieved a great level of success in taking the stylistic informa-
tion out of the HTML, there still are many sites that rely on HTML
tables for their layout. And even when tableless, pure CSS layouts
are used, the markup tends to depend, to a greater or lesser extent,
on the final visual layout.

The problem is that, even though CSS makes it possible, in the-
ory, to achieve almost any design, there are some common tasks
which are difficult, if not impossible, to do with CSS. This thesis
states that the promised separation between presentation and con-
tent is not currently possible in CSS, due to a lack of true layout
mechanisms.

Therefore, this thesis proposes a new layout mechanism for
CSS, which has been developed within the W3C Cascading Style
Sheets Working Group (CSS-WG), coauthored by this author and
one of his supervisors: the CSS3 Template Layout Module. It relies
on the classical graphic design theory of grid systems, and provides
a framework for arranging elements on the screen regardless of their
position in the document source code. It allows the layout to be
defined explicitly, at a high level of abstraction, whilst currently the
layout is implicit, hidden in the complex interactions that happen
among the low-level properties that are applied to every single ele-
ment. As it is demonstrated in the body of the dissertation, it brings

iii

several major advantages over the manner in which layouts are cur-
rently specified, to wit:

• Ease of use
• A content-reordering mechanism is provided
• Layouts can be automatised by a tool

This thesis demonstrates, through several case studies, that the pro-
posed solution achieves a greater separation between presentation
and content, or, more specifically, between the structure of the doc-
ument and its visual layout on the screen when it is rendered. Fin-
ally, the thesis presents a prototype, named ALMcss (Advanced
Layout Module for Cascading Style Sheets) that supports the new
layout mechanism on current browsers.

iv

Contents
1 Introduction

Origin of This Thesis.. 2
Joining the W3C CSS Working Group .. 6
The Prototype .. 8

Layout .. 9
Separation between Presentation and Content 9
Problem Statement .. 12

A Historical Perspective ... 12
Thesis Structure.. 14

Chapter 1. Introduction ... 15
Chapter 2. Separation between Presentation and Content 15
Chapter 3. What Layout Is... 15
Chapter 4. Layout Languages.. 15
Chapter 5. CSS Box and Visual Formatting Models 16
Chapter 6. CSS Layout Techniques .. 16
Chapter 7. Case Studies ... 16
Chapter 8. The Problem of Separation between Structure and
Layout ... 17
Chapter 9. Proposed Solution: the CSS3 Template Layout
Module ... 17
Chapter 10. Demonstration: Case Studies Revisited............... 17
Chapter 11. ALMcss: A JavaScript Implementation of the
Template Layout Module .. 17
Chapter 12. A Visual Layout Generator 18
Chapter 13. Conclusions and Further Research....................... 18

2 Separation between Presentation and
Content
Introduction ... 20
Structured Documents... 23
Separation between Presentation and Content on the Web 23

v

The Web as a Universal Platform .. 24
HTML as a Language for Representing Structured Docu-
ments... 25
Old School Tricks ... 27
Presentational Elements... 32
Use of Tables for Layout .. 32
Cascading Style Sheets ... 37

Conclusions .. 38

3 What Layout Is
Introduction ... 40
What Is Graphic Design?.. 40
Typography ... 42

Line Length.. 43
Layout .. 44

Gestalt Principles .. 45
How We Read a Page.. 47
Hierarchy.. 49

Grid Systems .. 49
Elements of a Grid .. 51
Types of grids .. 53

4 Layout Languages
Introduction ... 56
User Interface Languages.. 56

XAML ... 56
XUL... 61

Graphical Libraries of Programming Languages 67
Java Swing .. 67

Discussion... 71

5 CSS Box & Visual Formatting Models
One Document, Two Representations ... 74

vi

Visual Formatting Model Basis .. 75
Types of Boxes... 77

Box Model Basis .. 78
A Historical Note about Width and Height on the Web......... 80
Box Dimensions .. 81

Collapsing Margins ... 87
Reset Default Styles .. 93

Floats .. 92
Other Uses of Floats ... 97
Float Issues... 98

6 CSS Layout Techniques
Introduction ...106
Types of Layouts..106

Fixed Layouts...107
Liquid Layouts...112
Elastic Layouts...113
Hybrid Layouts..114
The Long Debate...114

Equal‑Height Columns...115
Faux Columns..116

One True Layout ...122

7 Case Studies
Mismatch between Content Order and Visual Position132

Blog Posts...132
Newspaper Headlines...142

Floating a Block...145
“L”-shape Layouts ...131
Another Example...149

Styling a Definition List ..153
The Solution, Step by Step...131
Conclusions ...163

Vertical Grid ..165

vii

General Styles ..169
Changing the Dimensions of each Module131

Conclusions ..174

8 The Problem of Separation between Struc-
ture and Layout
Introduction ...178
CSS Is Not a Layout Language..179

The Problem with Floats ..181
The Problem with Absolute Positioning..................................182
Vertical Grids Are Not Possible ..185
Mixing Units Is Not Possible...185
Extra Markup Is Usually Needed ..186
There Are Not Content Reordering Mechanisms186
Redesign Is Not Possible..186
Complexity...188
Lack of Visual Tools ...188

Conclusions ..189

9 Proposed Solution: The CSS3 Template
Layout Module
Redde Caesari, quae sunt Caesaris...192
About the Solution...192
Introduction to the Template Layout Module193
Template Definition ..195

Slots...195
Row Heights ..196
Column Widths ...197

Positioning Content into Slots ..200
Width Algorithm ...200

Explanation of Minimum and Preferred Intrinsic Widths202
Height Algorithm ..203

Detailed Algorithm for Computing Heights204

viii

Slot Pseudoelement ..212
Vertical Alignment...213
Discussion...214

Alternative Syntaxes..215
Default Widths and Heights ..215
Using Percentages for Column Widths....................................216
Styling the Slots Themselves..217
Non‑rectangular Slots...223

10 Demonstration: Case Studies Revisited
Introduction ...227
Blog Entries ..228

Zeldman..230
Stuffandnonsense ..230
Meyerweb...233
Mark Boulton...233
Stopdesign..234
Jason Santa Maria..234

News ...235
Master in Web Engineering ..237
BIOTinfo Magazine ...237
Styling a Definition List ..238
YoDona Magazine ..241
One True Layout ...246
A Complete Redesign...248

Changing the Layout ..250
Conclusions ...253

11 ALMcss: A JavaScript Implementation of
Template Layout Module
Acknowledgements ..256
Introduction ...257
State of the Art ...258

ix

Changing the Code of an Open Source Browser....................259
Creating a Layout Engine from the Scratch264
Implementing an Extension of an Existing Browser270
Developing a JavaScript Plugin ...272

Design of the Prototype ...275
Architecture of ALMcss ..276
Parsing the Style Sheet ...277
Decorating the DOM ...281
Creation of the Structure ...281
Resizing ..289
Positioning ...290

Conclusions ..292

12 A Visual Layout Generator
Introduction ...296
User Interface ...297
Usage Example ..298

Opening the HTML Document ...298
Creating a New Template..298
Defining Slots ..301
Arranging the Content into Slots..301
Generated Template...301

Conclusions ..302

13 Conclusions and Further Research
Review...306
Major Contributions ...307

CSS Is Not a Layout Language ...307
CSS Is a Low-Level Language ...307
Implicit vs. Explicit Layout ..307
Cascading Style Sheets Calls for a Distinction Between
Presentation and Layout ..308
Requirements of CSS Layout ..308
An Innovative Layout Mechanism is Proposed309

x

ALMcss: The First Implementation of the CSS3 Template
Layout Module ..310
A Visual Tool for Generating Templates.................................311

Publications and other Stuff ...312
Publications ...312
Research Projects ..312
Awards ..313
Students’ Works ..313

Further Research..313
More Layout Improvements ...313
CSS Debuggers..314
Applying Design Patterns and other Object Oriented Best
Practices to Layout Engine Construction................................315

13 Conclusiones e investigación futura
Repaso ..318
Principales aportaciones ...319

CSS no es un lenguaje de maquetación....................................319
CSS es un lenguaje de bajo nivel ...319
Maquetación implícita frente a maquetación explícita320
Cascading Style Sheets requiere distinguir la maquetación del
resto de aspectos de presentación...320
Requisitos para un sistema de maquetación en CSS..............320
Se propone un innovador sistema de maquetación................321
ALMcss: La primera implementación del CSS3 Template Lay-
out Module...323
Una herramienta visual para generar plantillas324

Publicaciones y otros logros...325
Publicaciones ...325
Proyectos de investigación...325
Premios...325
Proyectos fin de carrera ..326

Investigación futura ...326
Más mejoras de maquetación ..326
Depuradores CSS..328

xi

Aplicar patrones de diseño y otras buenas prácticas orientadas
a objetos a la construcción de motores de renderizado328

References

xii

Acknowledgments
If I could thank only one person in this thesis, that would be no
doubt Bert Bos. Not only for his agreement to be one of the super-
visors of this thesis —notwithstanding how much honoured I am
by having as a supervisor the inventor of the technology to which
this thesis is devoted—, but for his extraordinary personal support,
both in the W3C CSS Working Group and during the three months
I spent at W3C Office in Sophia Antipolis, in the summer of 2009
—how much I have missed our whiteboard sessions since them!—.
I have no words to express my gratitude as he deserves.

Something similar happens with my other supervisor, Juan
Manuel Cueva. Without his guidance, support, and encourage-
ment, over the years, this thesis would not exist. I am sure that if fi-
nally becoming a doctor will take a load off my mind, he will also feel
alleviated of not having to continually remember me: “César, you
must do your thesis!”

I can not forget, either, José Manuel Alonso, former director of
the W3C Spanish Office, who put me in contact with Bert Bos when
I told him my initial thoughts about the possibility of contributing
to improve the layout capabilities of Cascading Style Sheets, which
in turn led me to join the W3C CSS Working Group and eventually
to write this thesis, something that would have not been possible
without his help.

My gratitude to CTIC Foundation1 for having funded the first
version of the prototype presented in this thesis, ALMcss, with
the research project that also helped me to pay the travel and ac-
commodation expenses of my first face to face (F2F) meetings as a
member of the W3C CSS Working Group.

I am indebted to María Rodríguez, the first developer of the
ALMcss prototype. This thesis exists thanks to the extraordinary
work she performed during her research grant at CTIC Foundation,
which I could never thank her enough. It is also compulsory to men-

1 www.fundacionctic.org

xiii

tion Miguel García, who continued María’s work at CTIC Funda-
tion, and the students Enrique José Cabal and Pablo Abella, who
developed their undergraduate theses under my supervision and
contributed to improve this thesis.

Thanks to all the members of the W3C CSS Working Group:
it is a honour to work with so many talented people. I apologise for
not having attending many teleconferences and some F2F meetings
during the time I was writing this dissertation.

Special thanks to Andy Clarke, who honoured me allowing me
to contribute to his splendid book, Transcending CSS, and who has
dedicated to me kinder words than I deserve.

I will never forget the human warmth with which I was received
by all the staff of W3C/ERCIM office at Sophia Antipolis, during
my research stay there. I must explicitly cite Pascale Peyrol,
Caroline Baron, and Coralie Mercier: their friendliness, joie de
vivre, and their continuous jokes and laughs contributed to make my
stay there much more enjoyable. Thank you, girls!

My most sincere gratitude to my fellows of Laboratory of Ob-
ject Oriented Technologies (Oviedo3), our research group at
University of Oviedo, for all the support they have always given to
me, specially during this academic year that I have been devoted al-
most full time to write this dissertation. I am privileged to work in
such a fantastic atmosphere. I would like to extend this thankful-
ness to all the members of the Computer Science Department at
University of Oviedo, both colleagues and administrative staff.

Also thanks to my students at University of Oviedo, who have
understood that this year I have not been able to devote them so
many time as I should.

The hardest sacrifice that I have had to make to finish this thesis
has probably been not skiing this season, so some words of appre-
ciation must go to Guti, Kako, Luis Rovés, Julia, Elena, and the
rest of members of the Alcoyano Ski Team, as well as to Andrade
and all my skiing buddies: you can not image how I have missed
you! A special mention must be made to Carlos Guerrero Castillo
(Carolo): he is not only one of the best ski coaches in the world, but

xiv

one of the most beautiful persons I have ever known, of whom I am
lucky enough to count with his friendship.

To Fermín, Marco, and Laureano, classmates from primary to
secondary school, and who still are my closest friends. My apolo-
gises for all the times I have not gone out to dinner with you because
“I had to do my thesis”.

To my Facebook friends, because during the last months of
writing they have been almost my only contact with the outer world.

To my parents, for having educated me as they did. My mother
has always been there, with her love and support. My parent taught
me to prefer justice to peace, and he has always been a model of
integrity and honesty to me. To my sister, hoping that this thesis
serves her as a demonstration that everything can be achieved, and
she becomes the professional dancer that she deserves to be. To all
my family (cousins, uncles, grandparents…), with all my appreci-
ation for the incredible good relationship that we maintain.

To my kitten Lana, who has also suffered this thesis, as her con-
tinuous “miaows” demanding my attention have remembered me
during the last year that I have not played with her as I used to.

To María, my wife, my friend, my partner, with all my love, for
the year I have spent sitting in front of my computer, nights and
weekends included, and for her unconditional support. Thank you
for being there the last sixteen years. Being always doing planes to-
gether about our future is what has given to me the strength enough
to finish this thesis.

I would not like to finish these acknowledgments without re-
membering all my friends that, one way or another, have also
suffered this thesis, which has been my recurrent and obsessive sub-
ject of conversation during many years. Although I can not mention
every single person, this thesis is dedicated to all of you, since it is
somewhat yours too.

xv

Introduction
This initial chapter sets the hypothesis of this thesis:
Cascading Style Sheets (CSS) is not a layout
language. This is a bold affirmation that requires, of
course, demonstration, and it is to what the first part
of this thesis is committed. This chapter aims to
answer the question of what this thesis is about and
sets the foundation upon which the rest of the
dissertation is based. Because of its introductory
nature, it will inevitable make assumptions and refer
to concepts that will be either demonstrated or
thoroughly discussed in the body of the dissertation.

Finally, it outlines the structure of the whole
dissertation, with a brief summary of every chapter.

1

Origin of This Thesis

I would like to start this thesis relating how it was conceived and the
initial steps taken of what has been a long process until it has been
eventually brought into existence in the form of this dissertation.
Certainly, one does not wake up from bed one day and says: “Hum,
I’m going to do a Ph. D. Thesis on CSS!”. It is often only as a result of
a longer mental process, mostly unconsciously, when one acquires
the conviction that there is a field that is worth to be investigated.

Whereas this thesis has not been very different in that sense,
there is, though, a precise instant when I started to think for the
first time on the idea of doing my Ph. D. about this topic, despite
it supposed a dramatic change from what had been my research
until that moment, focused on things that had nothing to do with
style sheets nor layout, like object orientation (Izquierdo, Acebal
& Cueva, 2002), programming language design (Acebal, 2001),
design patterns (Acebal, Izquierdo & Cueva, 2001), and that sort of
things. Meantime I had also gained quite experience in web stand-
ards —specially CSS and HTML— and other related subjects such
as usability and accessibility, but more as a teacher and an advanced
user than as a researcher.

But then things suddenly changed. It was the year 2005 and I
had to do a small web site for an introductory CSS course I was
teaching at University of Oviedo since two years before (which I
have continued imparting regularly since then, two or three times
per academic year). For the second edition of that year I wanted
to give the site the appearance of a magazine that had inspired
me, a Spanish publication about interior decoration, called Casaviva.
Among other design requirements, it should have the main naviga-
tion placed at the bottom of the page, imitating the main topics of
the magazine cover. The final design of that web site, as it could be
seen in 2005, is shown in figure 1.

As it can be seen in the sketch of the markup for the home page
of that site shown in figure 2, the primary navigation, despite its de-
sired position at the bottom of the page, is located at the top of the

Introduction

2

Figure 1. Home page of the 2005 edition of the course on Cascading Style Sheets that I teach at University of
Oviedo, inspired in the design of a magazine cover. The design of this web page led me to the hypothesis of this
thesis: more advanced positioning and content reorder mechanisms need to be added to CSS to make possible a
true separation between presentation and content on the web.

document, right after the header. That is its natural position when
we concentrate on the logical order of the content rather than on
the final presentation we want to give to it.

While doing that site, I noticed that we do not count with the
needed tools in CSS to accomplish that sort of positioning. The lay-
out is still feasible using just valid CSS and structural markup, as my
own example is demonstrating: even in the browsers of four years
ago —including Internet Explorer 6 with a couple of minor adjust-
ments— the site was rendered correctly and it looked exactly like
the modern capture of figure 1. The problem is that, although the

Origin of This Thesis

3

Figure 2. The primary navigation of the site, represented by the ul element with the identifier menu, is placed at the
top of the HTML document, right after the header. That is its natural position when we think about the markup
from a structural point of view, ignoring any consideration about which will be the visual design.

<div id="container">

<div id="header">...</div>

<ul id="menu">...

<div id="main">

<div id="content">

<h1>Creación de sitios web mediante hojas de estilo</h1>

...

</div>

<div id="footer">

<p class="cesaracebal"><img src="images/

barcode.png" alt="César Acebal"/></p>

</div>

</div>

</div>

menu appears at the bottom of the page, as it was intended, and
it is even possible without introducing any change in the previous
markup, it does not show the same behaviour as if it had been ac-
tually defined there in the HTML. This becomes obvious when we
increase the font size or reduce the browser window. In both cases
the menu overflows the footer, as it is depicted in figure 3.

Naturally, the question is why this is happening and if it could
have been avoided using other CSS technique. As any experienced
CSS user could guess just looking at that figure, the overflow occurs
because I am using absolute positioning to take the menu out of its
actual position in the markup (that is, near the top of the document,
just after the name of the site) and display it at the bottom of the
page. There is no other mechanism in CSS than absolute position-
ing that allows this type of severe changes between the position of
an element in the markup and the place where it is visually arranged
on the screen.

Introduction

4

Figure 3. When the browser
window is reduced the abso-
lute positioned menu over-
flows the footer.

Of course, this could have much more easily achieved simply
moving in the HTML the list that represents the menu to the footer:

<div id="footer">

<ul id="menu"> ...

...

</div>

Not only would we obtain the same effect without the complexity
of absolute positioning, but in that case the page would react as it
is expected towards changes in the font size or the dimensions of
the browser window. Because the menu is now actually contained in
the footer, its parent element knows how to adapt itself to always fit
its contents, without we have to concern about that (this is the de-
fault behaviour of HTML since the invention of the web). However,
doing so would mean to alter the logical order of the markup,
something undesirable in terms of the accessibility of the document
(let us think, for example, how it would be interpreted by a screen
reader or a Braille terminal). Moreover, this practice of introducing
changes in the markup to obtain stylistic effects breaks the separ-
ation between structure and presentation. What would happen if
later we wanted to redesign the site using a more common layout,
with the navigation menu at the top of the page? Would do we then
move it to the place where it should have been since the beginning
if we had though in the content instead of the presentation?

Origin of This Thesis

5

Now, let us suppose that we had an imaginary CSS property
that allowed us to place any element inside any other, no matter the
order in which it actually appears in the HTML. Something like:

#menu {

position: footer;

}

This thesis states that a true
separation between presenta-

tion and content is not pos-
sible with current CSS layout

mechanisms.

That simple. After all, have not we always been told that CSS allows
the separation between presentation and content? This thesis states
that such separation is not possible without more advanced mech-
anisms which let us put elements into any position of the page re-
gardless of the place they occupy in the HTML.

Needless to say, things are not so easy as the solution barely
sketched out in the previous code, of course, since there are many is-
sues not yet addressed here. Specially, the order in which the so po-
sitioned element should be inserted into its destination. That is, how
it interacts with the other elements that are actual children of the
footer. In addition, while something like that would be a very flex-
ible reorder mechanism, there is no evidence that it could serve as a
general layout tool and not only for very concrete situations like the
example presented here.

But the important thing is that I had got the conviction that
there was a lack of powerful layout mechanisms in CSS. There was
not the first time that I had been struggled with the problem of the
order of the content versus the presentation, of course, but it was
the first time that I thought of it in a conscious manner and the start-
ing point for what has ended up being this thesis.

Joining theJoining the W3CW3C CSSCSS WWorkorking Gring Groupoup

Once it appeared clear to me that Cascading Style Sheets, in its
current version, did not fulfil the requirements to accomplish the
promised separation between presentation and content, and with
just that vague idea in my head, I decided to talk with José Manuel
Alonso, at that time director of the W3C Spanish Office, and express
my thoughts to him. I had clear that there was still room for im-
provement in CSS with regards to its layout capabilities, but I was

Introduction

6

not sure that it were a plausible topic for a doctoral thesis. I really
needed the opinion of someone else. Ideally, someone with a solid
background on CSS as to be able to confirm or reject the validity
of my hypothesis, but who were also aware of what a Ph.D. Thesis
must be. The person to whom he pointed me could not be more ap-
propriate: Bert Bos. We had not only invented (with Håkon Wium
Lie) the Cascading Style Sheets (Lie & Bos , 1996), but he was also
in possession on his own Ph. D. degree (Bos, 1993).

He did not only not became surprised with my “proposal” (as-
suming that something outlined in a serviette can be so named), but
it turned out that he was already working on the same problem (al-
though with a much more elaborated solution: the Advanced Lay-
out Module, an internal draft of the W3C CSS Working Group).
The following is an excerpt of the very first electronic mail that he
wrote to me, on February 8, 2005:

Something that the Device Independence WG is very interested in (and I
as well) is to specify something like a “design grid” for a page or a site, us-
ing CSS. The idea is that a set of page templates is created for different
types of devices, each of which describes the layout at a high level, e.g., 3
columns with a navigation bar at the top, two columns one of which has
two rows, three columns of which one is twice as wide as the others, etc.

It is possible to position elements of a page using the existing proper-
ties (margin, float, position, etc.), but such styles tend to be specific to a
page and also quite hard to make, as soon as elements need to be shown
out of order, e.g., to place a menu that is at the start of the file to the right
of the main text on the screen.

We (in particular Dave Raggett, Håkon Lie and myself) already
wanted to develop a CSS module for such layout back in 1996, but at
the time the browser makers weren’t able (or willing) to implement it.
But both graphic designers and content providers for mobile phones are
asking for it now.

My idea is that it is possible to define a CSS property, that defines
for each element (typically for the root element) what the design grid for
that element is. With some, hopefully simple, syntax, it describes the
rows, columns, the spaces in between and the constraints on their sizes.
All the other elements are then styled normally, but in addition, they are

Origin of This Thesis

7

assigned to a slot in the grid: the menu goes in the menu slot, the logo
goes in the logo slot, etc.

Thus, instead of working on some kind of academic solution that
would have probably ended up gathering dust in a drawer, I decided
to join Bert’s efforts and start to work on the Advanced Layout
Module. On the other hand, my University had recently became
member of the W3C, so I talked to our W3C representative and,
after a few months of bureaucracy, I was formally nominated to join
the W3C CSS Working Group on 29th December 2005.

TThe Phe Prrototototypeype

In parallel to my conversations with Bert Bos, and also thanks to the
mediation of the W3C Spanish Office, I contacted CTIC Founda-
tion1, a regional organism of the Principality of Asturias, about the
possibility of getting some funding research project to work on the
ideas we have started to discuss. They were very interested in mobil-
ity aspects, and I was convinced that our solution could be also very
helpful to people doing web sites for mobile devices, since it would
make very easy to change from one layout to another without alter-
ing the HTML.

Thence, after a few meetings with the responsible people at
CTIC Foundation, they agreed to give me a research project to de-
velop a prototype which implemented the ideas sketched on the Ad-
vanced Layout Module. It was a very small project in terms of the
money I received for it, but it helped me to fund my first travels
to attend the W3C CSS Working Groups face to face meetings, and,
which was much more important, the project included a research
grant for a developer. As the main researcher of such project, I was
the responsible to select the person for that position. After announ-
cing the grant and doing quite a few interviews, I designated María
Rodríguez as the grant holder, who started to work full time on
CTIC Foundation offices in August 2005. She was therefore the
first developer of the prototype presented in this thesis, which we

1 Center for the Development of Information and Communication Technologies in
Asturias (CTIC Foundation), http://ctic.es/

Introduction

8

http://ctic.es/

named ALMcss (Advanced Layout Module for Cascading Style Sheets).
By February 2006 we already had a first version of it that I was
able to present at the W3C Technical Plennary of 2006 (Mandelieu
la Napole, France), during a joint meeting between the CSS and
Device Independent working groups.

Layout

The term layout, despite it is one of the essential concepts upon
which this thesis is built, has already appeared several times so far
in this chapter without any further explanation of its meaning. Al-
though it will be defined as it deserves on Chapter 3, it is worth to
provide here a brief definition of what I intend by layout in the con-
text of this thesis.

In a rather informal definition, the layout of a document means
in this dissertation the overall graphical structure of its elements
when they are displayed on the screen, as opposed to other stylistic
information such as fonts or colours. They are not completely sep-
arated, of course, because indenting or colouring a text influences
what the user perceives as the visual structure of a page. But layout
is usually situated at a higher abstraction level than those aforemen-
tioned presentational aspects.

Separation between Presentation and
Content

This concept, expressed in any of its multiple forms (“separation
between content and presentation”, “separation between structure
and presentation”, “content vs. presentation” etcetera), is re-
peatedly cited as one of the main achievements of Cascading Style
Sheets. However, it is ambiguous enough to mean different things
for different authors. Thus, in the course of this research two distinct
uses of that term have been identified in the literature:

Origin of This Thesis

9

Automatic layout
The separation between the presentation and the content of a docu-
ment is sometimes a desired feature of certain publishing tools and
platforms. The web itself is the best exponent of this architectural
requirement (Jacobs & Walsh, 2004, §4.3):

The Web is a heterogeneous environment where a wide variety of agents
provide access to content to users with a wide variety of capabilities. It is
good practice for authors to create content that can reach the widest pos-
sible audience, including users with graphical desktop computers, hand-
held devices and mobile phones, users with disabilities who may require
speech synthesisers, and devices not yet imagined. Furthermore, authors
cannot predict in some cases how an agent will display or process their
content. Experience shows that the separation of content, presentation,
and interaction promotes the reuse and device-independence of content;
this follows from the principle of orthogonal specifications.

Or, as Hurst, Li and Marriot (2009) have pointed out:

In the last fifteen years there has been a resurgence of interest in auto-
matic layout because of the World Wide Web (WWW) and variable
data printing (VDP). This has resulted in a shift of focus from micro-ty-
pographic concerns such as line breaking to macro-typographic concerns
such as page layout. One of the design goals of modern web document
standards such as HTML and CSS has been to separate the document
content from its presentation so as to allow the layout to adapt to differ-
ent viewing devices and to different user requirements, such as for larger
fonts. Further- more, dynamic content makes it impossible for the author
to fully specify the final layout of a document.

One of the meanings of separ-
ation between presentation

and content refers to the abil-
ity of the system to automat-

ically choose the most appro-
priate layout for a document
based on its structure and on
the concrete device where it

is being rendered.

HTML is intended to be represented in a variety of devices, each
with different constraints on screen size and resolution, available
fonts, number of colours and so forth. Thus, one of the majors goals
of HTML is to allow, even to impose, authors to concentrate on the
content and structure of a document instead of its presentational as-
pects, which, in the absence of Cascading Style Sheets, are left to the
user agent.

Introduction

10

Therefore, in this context the duality between content and
presentation is not referring to the author’s capability to specify the
design of a document after it has been created, but on the ability of
the system to automatically choose the most appropriate layout for
a document based on its structure.

Designer’s viewpoint
Other interpretation of this phrase is often cited as a major good-
ness of Cascading Style Sheets and one of its design goals (Nielsen,
1997b):

Cascading style sheets (CSS) are an elegantly designed extension to the
Web and one of the greatest hopes for recapturing the Web’s ideal of
separation of presentation and content.

Nielsen’s statement is alluding to the fundamental problem that is
often implicit in most usages of this concept: although the web had
been born as a medium independent of any specific hardware device
and software platform, and HTML had been conceived as a lan-
guage to represent just the structure and content of a document,
designers soon started to deviate from its inception, and began to
use it more as a presentational language. According to this interpret-
ation, Cascading Style Sheets were developed to allow authors to
work on the structure and content of a document without worrying
about its visual representation. It would be later, once the document
were finished, when they could apply whatever style to it, and even
change from one design to another without modifying the HTML
document.

The last meaning of separation between content and presentation is
the approach with which this thesis is concerned (although to refute
it: as it will be demonstrated in subsequent chapters, such degree of
separation is not yet possible on the web, due to the lack of true lay-
out mechanisms in CSS).

Separation between Presentation and Content

11

Problem Statement

The opening example of this chapter already provided some hints
of the problem addressed by this theses, namely, its inability to
carry out some layouts without altering the logical order of the
source code or adding extraneous markup, something that breaks
the promised separation between presentation and content. This
section introduces it in more detail, although the complete explana-
tion will be deferred until a later chapter.

A HistA Historical Porical Perspecerspectivtivee

From the beginning of the web and, more specifically, with the ad-
vent of the first graphical browser, web designers have been trying
to improve the general appearance of their pages, even if it led to
certain perversions in the use of standards —or to not using stand-
ards at all.

Several of such tricks are well-known to any experienced design-
er: transparent images, using tables for composition or esoteric, non
semantic uses of some HTML elements are just a few of them. Let
us think a moment about how people used those old techniques and
we will realise that many of them were aimed at changing the lay-
out of the document. Indeed, one of the first things that designers
missed in the web was the ability to specify the overall visual struc-
ture of a page with the same easy and level of control that they were
used to in traditional, printed media.

These kinds of complex layouts were impossible in the first days
of the web. After all, HTML was not designed for that, but as a way
to represent the content and structure of a document. But the addi-
tion of the table element to HTML 3.2, in 1997, opened up a new
world of possibilities for designers, who soon began to employ it not
to represent tabular data, but to specify the layout in terms of rows
and columns (that is, as a grid). We all know what followed: designs
in which content was insignificant compared to the amount of nes-
ted tables. It is worth recalling the problems of those deeply nested,
table-based layouts:

Introduction

12

• They mix content with presentation, sometimes to such extremes
that the task of maintaining the site (adding content to a page or re-
designing) becomes a nightmare.

• They present well-known accessibility issues, because it is difficult
for screen readers and mobile devices to interpret them right.

In an attempt to turn the situation around and return HTML to its
original conception as a language to represent the logical structure
of web documents, in 1996 the W3C developed Cascading Style Sheets
(Lie & Bos , 1996). All stylistic information should now be taken
out of the HTML and left to the style sheet.

While CSS has achieved a great amount of success in removing,
for instance, font tags from the markup, there are many sites that
still rely on HTML tables for specifying their layout. This is very
common in web sites that are redesigned to be standards compliant.
Although they use valid (X)HTML and CSS for most of the stylistic
information of the page, many of them continue specifying their lay-
out with tables. This is what has been called hybrid layouts, as op-
posed to pure CSS layouts (Zeldman, 2003).

Table-based layoutsDespite their aforementioned well-known problems, tables are
still a common way of laying out web pages. Why?

We should not oversimplify and blame designers saying that
many of them are so used to those old techniques that they have not
been able to adapt themselves to web standards. Although there are,
without doubt, people that effectively have not made an effort to
understand CSS, the truth is that many professional designers have
never felt comfortable laying out their sites in terms of floats and
absolute positioning (and they probably do not lack reasons). No
doubt, inconsistencies between browser implementation of CSS are
also responsible for this attitude.

The problem is that, although CSS is said to provide great flex-
ibility to layout a page and makes possible, in theory, to achieve al-
most any design, there are some common tasks which are difficult,
if not impossible, to do with CSS —let us think, for example, how
many articles, tutorials and blog entries have been written about
getting equal height multi-column layouts. As Holzschlag (2005a)
has pointed out:

Problem Statement

13

What we’re just beginning to understand —particularly those of us who
come to CSS layouts after years of working with tables— is that the
visual model for CSS is far more conducive to breaking out of the grid
and designing for discrete, semantic elements. Perfect, no, for despite the
gains made possible by CSS, we lose things too. Stretching columns is a
decidedly problematic issue in CSS design, and cell spacing is too.

Thesis Structure

Being this a thesis that falls into several fields, it is compulsory to
provide some background information before to examine the prob-
lem in detail. That is what chapters 2 and 3 do. The former presents
the basic concept of separation between structure and content, and
reviews the related literature. The latter do the same for layout and,
more specifically, the fundamental graphic design theory of grid sys-
tems, which has inspired the solution presented in this thesis.

After that, some layout languages are reviewed in chapter 4,
since they are related, to a greater or a lesser extent, to the proposed
solution.

Chapters 5, 6, and 7 aim to demonstrate the hypothesis of this
thesis, namely, that CSS is not a layout language and, as a conse-
quence, the promised separation between presentation and content
is not currently possible. This part of the dissertation begins review-
ing the basis of the Cascading Style Sheets box and visual format-
ting models, then analyses the state of the art of advanced CSS tech-
niques that are being used for layout, and, finally, provides a few
case studies, of different levels of complexity, to proof the hypothes-
is of the thesis.

Chapter 8 summarises and discusses the issues of CSS that have
been identified in the previous chapters, setting the problem state-
ment of the thesis in detail.

Then, it starts the part of the dissertation where a solution to
this problem is proposed (Chapter 9). It is demonstrated (Chapter
10) with the same case studies that were previously reviewed on
Chapter 7, which are now done with the extension to CSS presented
in the previous chapter. Finally, an implementation of the proposed

Introduction

14

solution that works in current web browsers is thoroughly described
(Chapter 11), and a prototype of a visual layout generator that uses
the proposed template layout mechanism is presented on Chapter
12.

Last chapter summarises the major contributions of this thesis
and where there is room for further research on the subject of layout
and Cascading Style Sheets.

After this introduction, a brief description of each chapter is
provided below.

ChaptChapter 1er 1. In. Intrtroducoductiontion

The aim of this chapter is to set the problem statement of this thesis.
Of course, this has necessarily to be done at a high abstraction level,
since the details can only be totally understood once the layout cap-
abilities of Cascading Style Sheets have been discussed in Chapters
5 and 6.

ChaptChapter 2er 2. S. Separeparaation bettion betwween Peen Prresenesentatation and Ction and Cononttenentt

This chapter describes the concept of separation between presenta-
tion and content, a common principle of structured documents and
style sheets languages. It reviews the related literature to later con-
centrate on the specific case of World Wide Web.

ChaptChapter 3er 3. W. Whahat Lat Layyout Isout Is

The third chapter defines what layout is in the context of this thesis
and provides a background on the theoretical aspects of graphical
design which are relevant for this work. It briefly introduces grid sys-
tems, a classical concept of graphic design widely used in printed
media that only in recent years has commenced to gain popularity
among the community of web designers.

ChaptChapter 4er 4. La. Layyout Languagesout Languages

Prior to study how Cascading Style Sheets allow us to specify the
layout of web documents, this chapter will review how other lan-
guages address the same problem of layout. The languages reviewed
in this chapter are not intended as alternatives to the solution

Thesis Structure

15

presented in this thesis, but as inspiration for the requirements of
such solution.

ChaptChapter 5er 5.. CSSCSS BBoox and Vx and Visual Fisual Formaormatting Modelstting Models

This chapter reviews how CSS currently works with regards to lay-
out. To do so, the box model and visual formatting model of Cas-
cading Style Sheets are described, as well as the related properties
which deal with box dimensions and positioning schemes. I am
aware that this can be boring for some people who already have a
solid understanding of Cascading Style Sheets. It does not escape
me neither that a Ph. D. Thesis is not supposed to be a book on CSS
—not even an advanced one. However, I have finally decided to in-
clude this review of the way of working of CSS for the sake of com-
pleteness. First, this thesis is built on the assumption that the tools
provided by CSS for layout purposes (namely, floats and absolute
positioning) are far from being ideal. To demonstrate such affirm-
ation I need to make sure that all the intricacies of such techniques
are shown up. Secondly, I did not want that a not so well versed
on CSS reader of this thesis had to make constant references to the
specification to be able to understand the examples and case studies
provided to demonstrate the inability or complexity of CSS to carry
out certain layouts.

ChaptChapter 6er 6.. CSSCSS LaLayyout Tout Techniquesechniques

Once described how CSS works, some more advanced techniques
are presented in this chapter. They use the properties seen before in
more complex and imaginative ways to obtain some layout effects
which are not evident, like getting any number of columns in any or-
der, or equal height columns. This chapter thus represents the state
of the art of this thesis with respect to the capabilities of CSS as a
layout language, setting the foundation for the problem statement
of Chapter 8.

ChaptChapter 7er 7. C. Case Studiesase Studies

Once the current layout mechanisms of Cascading Style Sheets
have been discussed in the two previous chapters, it is time to put

Introduction

16

them in practice and experiment with some layouts to see how they
can be created with CSS. This chapter dissects the construction pro-
cess of a few case studies to extract the conclusions that are going to
be discussed in the next chapter, the problem statement.

ChaptChapter 8er 8. T. The Phe Prroblem of Soblem of Separeparaation bettion betwween Struceen Structurture ande and
LaLayyoutout

Although the main problem addressed by this thesis has already
been outlined in this introduction, this chapter explains it in more
detail, summarising the results of the previous experimental chapter
and discussing the problem statement of this thesis, namely, the lack
of proper layout mechanisms in Cascading Style Sheets, which pre-
vents a true separation between presentation and content.

ChaptChapter 9er 9. P. Prroposed Solution: theoposed Solution: the CSS3CSS3 TTemplaemplatte Lae Layyoutout
ModuleModule

A concrete solution to the problem of layout on the web is presen-
ted in this chapter, in the form of an extension to CSS to give it true
layout mechanisms that do not rely on floats and absolute position-
ing and allow instead to define the overall layout of a document in
an explicit way. The proposed solution has been developed inside
the W3C CSS Working Group, and is a Working Draft of the fu-
ture specification of Cascading Style Sheets. Some extensions that
do not form part yet of the working draft are also proposed.

ChaptChapter 10er 10. D. Demonstremonstraation: Ction: Case Studies Revisitase Studies Revisiteded

To demonstrate the goodness of the solution to resolve the problem
of the lack of true layout mechanisms in Cascading Style Sheets, this
chapter revisits the case studies that were presented in Chapter 7
and explains how they could have been achieved using the Tem-
plate Layout Module.

ChaptChapter 11er 11.. ALMCSSALMCSS: A Ja: A JavvaScript ImplemenaScript Implementatation of thetion of the
TTemplaemplatte Lae Layyout Moduleout Module

In addition to the theoretical solution proposed in Chapter 9, and
to the demonstration of how it could have been used in practice to

Thesis Structure

17

carry out some designs that are either impossible or very complex
to do with CSS, it is still needed to prove that such solution can be
actually implemented. Therefore, this chapter presents the proto-
type that has been developed as a part of this research: a JavaScript
browser plugin that implements the Template Layout Module in
current browsers.

ChaptChapter 12er 12. A V. A Visual Laisual Layyout Gout Genereneraattoror

Another contribution of the proposed solution is that it should
make easier for visual editing tools to generate layouts that it is
today. Although WYSIWYG applications have improved a lot dur-
ing the last years, and they are now able to produce pure CSS lay-
outs, the code they generate is still inelegant and verbose, and they
compromise the logical order of the content. Furthermore, they
usually rely on absolute positioning for layout, which leads to inflex-
ible designs that does not adapt themselves well to different screen
resolutions and mobile devices. This chapter presents a prototype
that is able to generate templates for the proposed solution, to proof
that it can be easily automatised, and to make easy for final users to
use the module without having to know its concrete syntax.

ChaptChapter 13er 13. C. Conclusions and Fonclusions and Fururther Researther Researchch

The ending chapter of this dissertation summarises the main contri-
butions of this thesis: first, it has demonstrated the unsuitableness
of Cascading Style Sheets to be used for layout, and, for that very
reason, that a true separation between presentation and content is
not currently feasible on the web; secondly, the requirements that
an extension to CSS should fulfil to be considered a solution to
that problem have been identified; finally, a concrete solution, along
with the demonstration of its viability, and an implementation that
serves as a proof of concept are also provided. Furthermore, the
chapter analyses where there is room for improvement in the sub-
ject of layout on the web in general, pointing out some lines of fu-
ture research in this field.

Introduction

18

Separation between
Presentation and
Content
Although the idea of separation between presentation
and content is well-known, and, specially in the case of
the web and Cascading Style Sheets in particular is
repeatedly cited, it is necessary to explain what it
means and how it is connected to this thesis.

Therefore, this chapter first introduces such a
concept, briefly reviewing the related literature, and
then moves into the World Wide Web concrete issues,
where the problem of separation between content and
presentation is put into its historical context,
providing some background on how this idea was first
misunderstood and then perverted.

2

Introduction

The concept of separation between presentation and content is
neither new nor exclusive to the web or CSS. Nor even to electronic
publishing. Although there is much written on this subject in the
fields of document engineering and document formatting, as Fleishman
pointed out (1999), the idea of style sheets, based on the concept of
“define once in a central location and apply many times throughout
a document”, can be even found in the pre-desktop-publishing days:

Back then, when designers needed to do elaborate formatting for body
copy, headings, and so on, they would create a list of specifications —on
a typewriter, even— and assign a number to each style. When a typeset-
ter saw a circled 1, for instance, he or she referred to style 1 on the style
sheet and carried out its specifications.

It was, however, with the lowering of cost in microcomputers and
imaging devices, when the two areas of typesetting and publishing,
and computer science, were brought together, not only for the be-
nefit of the brute-force computer power, but also thanks to the ap-
plication of computer science concepts to the field of electronic
publishing (Brailsford, 1988). According to this author, there are
analogies between typesetting and compilers, in the sense that, by
having a machine-independent intermediate code, a compiler be-
comes usable over a wider range of computers; similarly, “the idea
of a document being an abstract concept, which may or may not be re-
lated to its final concrete appearance on the printed page”, such as happens
with the Standard Generalized Markup Language (SGML), makes
possible to process it “in ways which go far beyond text prepara-
tion”. Interestingly, the same analogy between compilers and elec-
tronic publishing was also simultaneously done by Chen and Har-
rison (1988), when they say that “traditional document develop-
ment systems like the Troff family, Scribe, TeX and SGML … are
largely noninteractive language compilers”.

But, what does separation between presentation and content mean?
Essentially, it refers to the fact that an author can (and should) focus

Separation between Presentation and Content

20

only on the content of a document (that is, the writing, figures, and
tables, in the case of a printed document, like for example this dis-
sertation; or any other content, like video or audio, in multimedia
documents), which will be later formatted to give it the desired ap-
pearance (page size, font type and size, margins, colours, etcetera).
This is frequently cited as one of the essential features of separation
of presentation and content in general (Clark, 2008), and of descript-
ive markup languages in particular (Coombs, Renear & DeRose,
1987, p. 943).

However, the above definition of is too simplistic. Even after
completely separating the presentation from it, any document is
more than the content itself. Thus, the content in inextricably
bound to the structure of the document. Hence the notion of struc-
tured documents, essential to style sheets: without structure, no style
can be later applied to a document.

As for the style, van Ossenbruggen and Hardman (2002) make
a similar distinction: they argue than the “structure of the present-
ation” (what in this thesis terminology is called layout) is a third es-
sential ingredient in the separation of concerns of a document:

The simple separation of content and style as described above suffices
only when the presentation structure is similar to the content structure in
the underlying XML. If this is not the case, then a transformation step,
such as enabled by XSLT, is needed to convert the content structure to
the desired presentation structure. For example, the lexical order in a
source HTML document might need to be transformed to the order that
is most appropriate in the text-flow of the target HTML presentation.

Although their research is more concerned with multimedia, the
quotation above can be extrapolated to HTML/CSS, and is very rel-
evant to the problem tackled by this thesis. Based on their reason-
ing, they establish several dependencies among the three identified
ingredients of a document, which are depicted in figure 1.

It is also worth to mention the distinction that van Ossenbrug-
gen (2001, pp. 11–12) establish between layout-driven versus
content-driven applications:

Introduction

21

Figure 1. Dependencies
between content, presenta-
tion structure, and style, as

shown by van Ossenbruggen
and Hardman (2002).

In layout-driven applications, the layout and content of a document are
tightly coupled, and there is generally no need to produce multiple ver-
sions with alternative layouts. Typical examples of layout-driven applic-
ations include the cover page of a glossy magazine or advertisements
with a large amount of graphical material. Because of the tight integra-
tion of content and layout, these documents can be effectively authored
directly in terms of the final presentation.

In contrast, content-driven applications focus on the content, which
often needs to be presented in several ways, for example by using differ-
ent layouts. For content-driven applications it is useful to separate con-
tent from presentation information, because this separation allows reuse
of the same content in alternative presentations.

Separation between Presentation and Content

22

Structured Documents

Essential to the separation between presentation of content is the
notion of structured documents, in which “the relationships between
components are based on the document’s logical structure and not
the physical appearance of the components on the page” (Furuta,
Quint & André, 1988). These documents are usually represented
by generic markup, a concept that was first originated by IBM Gen-
eralized Markup Language (GML) and then popularised by Scribe
(Reid , 1981). One of the postulates of GML, according to Goldfarb
(1981) was:

Markup should describe a document’s structure and other attributes,
rather than specify processing to be performed on it, as descriptive
markup need be done only once and will suffice for all future processing.

Furuta, Quint & André (1988) distinguish three representations of
a document for being processed, to wit:

• The document model representation
• The output model representation
• The display representation

The document model represents the logical structure of the docu-
ment, which will be later transformed into the output model
through the formatting process. The output model represents the
physical appearance of the document. This output model is finally
mapped to the specific display representation, depending on the
particular medium in which it is going to be rendered.

Separation between Presentation and
Content on the Web

Nielsen (1997b), one year after the first version of CSS had been re-
leased (Lie & Bos , 1996), already stated that:

Cascading style sheets (CSS) are an elegantly designed extension to the
Web and one of the greatest hopes for recapturing the Web’s ideal of sep-
aration of presentation and content.

Introduction

23

Nielsen does not only affirm that one of the basic principles of the
web is the separation of presentation and content, but he is also im-
plying that that ideal had been lost at some point along the path
and it was needed to recover it. This section recreates that journey,
from the architectural requirements of the web itself to the inven-
tion of Cascading Style Sheets, focusing on the mentioned goal of
separation between presentation and content, which is put here in
its historical context, providing thence a foundation for what will
come later on Chapter 8: a compilation of my own conclusions about
the specific problem tackled by this thesis, namely, the lack of ad-
vanced layout mechanisms in CSS which prevent this separation of
concerns to be true.

TThe Whe Web as a Univeb as a Universal Plaersal Platftformorm

The World Wide Web (WWW) was conceived as a universal plat-
form: independent of any specific hardware device, software plat-
form, language, culture, or disability (Berners-Lee, 2007). Let us fo-
cus just on the first requirement of those enumerated in the previ-
ous sentence: the device independency. Its obvious meaning is that a
user should be able to access to any web site from any device, re-
gardless of its concrete features such as installed fonts, colour depth,
or screen resolution. But it also has implications on the way that

WYSIWYG and pixel level
control are, by definition, im-

possible on the Web.

web sites are designed. Specifically, it means that authors can no
longer think in the WYSIWYG way they were used to in printed me-
dia and traditional publishing tools. Whereas a magazine designer
has total control over every aspect on the magazine page, such as
page size and colours, the same is simply impossible, by definition,
on the web. We can not pretend that every user sees exactly the
same page, for the simply reason that we do not know the size of his
browser window (not to mention other devices such as text
browsers, braille devices or voice synthesisers). Thus, instead of at-
tempting to recreate exactly the same visual aspect for every user,
designers must specify the web pages in terms that allow browsers to
optimise them based on the individual circumstances of every user
(Nielsen, 2000, p. 28).

Separation between Presentation and Content

24

chapters/problem/problem.html#ch-problem-statement

HTMLHTML as a Language fas a Language for Repror Represenesenting Structing Structurtured Ded Documenocumentsts

To accomplish the requirements excerpted in the previous section,
Berners-Lee (1993) created the HyperText Markup Language
(HTML). It was strongly based on SGML, an ISO standard for de-
fining markup languages for documents. Despite HTML, strictly
speaking, is not an instance of SGML, it has inherited many of its
postulates, one of which is that markup should describe the structure
of a document, rather than any of its presentational aspects. HTML is
therefore a document format that is device-independent: it can be
rendered into many different devices, such as printers, screens,
braille printers and text synthesisers (Berners-Lee, 1991):

It is required that HTML be a common language between all platforms.
This implies no device-specific markup, or anything which requires con-
trol over fonts or colors, for example. This is in keeping with the SGML
ideal.

Lie (2005) has studied and classified various document formats
based on their ladder of abstraction. The results of such classifica-
tion are summarised in the table of figure 2. Despite the high level of
abstraction that the author concedes to HTML, which makes it ap-
propriate for being presented in very different ways, Lie recognised
that his rating of HTML “is based on a best-case scenario where the
author makes use of semantic elements and does not alter the read-
ing order of elements by using features such as positioning or tables.
It may be argued that most HTML documents do not follow these conven-
tions” (own emphasis).

But the problem is not whether the creator of an HTML docu-
ment uses Cascading Style Sheets positioning or other layout mech-
anisms to alter the linear order of the content when it is visually
rendered: as long as all of those transformation take place in the
style sheet, there is nothing bad in allowing the author to lay out the
content so that it conveys more effectively its message (that is sup-
posed to be the graphic designer’s mission, after all). In that sense,
Lie’s words are confusing when he says: “… and does not alter the
reading order of elements by using features such as positioning or
tables”, because when he uses the term “positioning” it is not clear

Separation between Presentation and Content on the Web

25

GIF, PNG
private XML
vocabulary

PDF XSL-FO HTML MathML

application-
specific semantics? no no no no no yes

device-independent? no no no no yes yes

roles known? no no no no yes yes

text in logical order? unknown unknown no yes yes yes

reflow possible? no unknown no yes yes yes

scalable? no unknown yes yes yes yes

text machine-readable? no yes yes yes yes yes

text human-readable? yes yes yes yes yes yes

Figure 2. A classification of various document formats with respect to the ladder of abstraction, as it appears in Lie
(2005, p. 42).

whether he is referring to CSS positioning mechanisms, which do
not alter the reading order of the content in any way.

The problem comes when those mechanisms are not powerful
enough to let the author present the content in the desired position
and he is therefore doomed to add superfluous markup, move an
element to another position in the HTML source code, or use tables
for layout (which is a particular case and has the effects of the
two previous methods). Any of these actions breaks the separation
between presentation and content, because we are binding the
markup to an specific layout and, when the latter changes, the
former must be modified too.

Separation between Presentation and Content

26

Old School TOld School Tricksricks

While the web was composed only of text pages that appeared in
black and white (or black and green) on the monochrome monitors
of that time, HTML remained as the structural language that it was
supposed to be. But, once the first graphical browser, Mosaic1, ap-
peared in 1993, companies began to discover the potential of the
web for commercial purposes and they soon started to demand
more and more appealing web sites. As a result of this interest, web
designers commenced to use HTML in a way for which it had not
been conceived. This problem has been acknowledged by many au-
thors. Thus, Korpela (1998) stated:

In traditional publishing, graphic designers and layout artists consider
the specific features of the presentation medium, including the paper size
and quality, the color palette, and so on. It has been very difficult to
switch from this approach to a simpler one, in which the author provides
the content and specifies the logical structure, leaving the presentation to
user agents.

Some of those tricks include (Lie & Bos, 2005, p. 6):

Incorrect use of HTML elements
For example, they soon discovered that a li element without its
counterpart, ul, was rendered by most browsers without the charac-
teristic bullet of unordered lists, but preserving the indentation, so
it became a common way to get indented text on web pages, even
though it broke the grammar of HTML.

Another example is the use of header elements just for the pur-
pose of getting bold and bigger text to highlight some phrases. Al-
though this does not invalidate the document, this sort of non se-
mantic use of elements in general and headers in particular presents
many accessibility problems.

1 http://www.ncsa.illinois.edu/Projects/mosaic.html

Separation between Presentation and Content on the Web

27

Figure 3. The Hook Mitchell
website (www.hook-

mitchell.com). As Zeldman
says (Zeldman & Marcotte,

2010), “a compelling design
powered by contorted code”.
It is entirely made of images,

instead of text, which in addi-
tion are enclosed in tables.

Proprietary HTML extensions
Once it became clear that authors were demanding more and more
control over the presentation of web pages, browser vendors started
to introduce presentational elements that deviated HTML from its
conception. In addition, since those elements did not form part of
the standard, they only worked in each specific browser. This was
known as the Browser War, referring to the competition between the
two major web browsers in the early days of the web: Netscape and
Microsoft Internet Explorer. Some of the invented elements were
eventually became part of the HTML specification (as happened
with FONT or TABLE); others, like MARQUEE or BLINK never did.

Using images instead of text
Another way to overcome what designers perceived as a limitation
of HTML (that is, its inability to define the presentation of a doc-
ument) was to convert text into images. By using an image, design-
ers were able to include any font and fully control other features,
such as spacing, alignment, or any other presentational aspects. Of
course, this goes against the nature of the HTML and the web itself,

Separation between Presentation and Content

28

http://www.hookmitchell.com/
http://www.hookmitchell.com/

Figure 4. The same film site,
this time with the images dis-
abled.

and makes the page inaccessible to other devices and search engines,
as it can be seen in the website of the film Hook Mitchell, cited by
Zeldman (Zeldman & Marcotte, 2010, pp. 38–41), shown in figure
3, and in figure 4 with images disabled.

Using tables for layout
This method, which has already been mentioned in the introduction
of this dissertation (see p. 13), consists on using tables not for rep-
resenting tabular data, but as a way of arranging the elements on the
page, that is, for layout. While some of the other tricks are something
of the past, the use of HTML tables for layout has remained until
today and they are still prevailing1. This issue is so relevant to the
problem tackled by this thesis that it will be described in more detail
in a following section.

Writing a program instead of using HTML
Another technique that allows designers to have full control over
the final appearance of their pages is writing some program that is
executed by the browser, instead of using the lingua franca of the

Separation between Presentation and Content on the Web

29

Figure 5. LangrehOtel web-
site (www.langrehotel.es),

entirely made in Flash.

web that is HTML and the related standards (CSS for presentation
and JavaScript for behaviour). Examples of this technique are Java
Applets and, more recently, Flash. It shares most of the accessibility
problems of images, as it can be seen in figure 5, which shows the
website of LangrehOtel, a modern and well designed hotel located
at La Felguera (Asturias, Spain), but which website, entirely made
in Flash with no reason for it (exactly the same site, but better, could
have been done with standards), is totally inaccessible, as shown in
figure 6.

1 In a survey of over 21,500 web pages, Levering and Cutler (2006) found that only
about 15.1% (CI=0.7%) of documents did not use a table at all. Although this fact
alone may not be very significative (tables might be being used for representing tab-
ular data), they also found that, of the documents that did use tables, they averaged
maximum table depths of 2.95 (CI=.04), reaching up to 8 tables at the high end.
As the authors say, this “indicates that nesting of tables to achieve the desired lay-
out is a norm”. A subsequent study made in 2007 by Levering for the book Website
Optimimization (King, 2008) found that, despite the widespread adoption of CSS,
62.6% of web pages still use tables for layout —and 32.8% use the font tag for in-
line style—, although the average table depth decreased from 2.95 to 1.47 with re-
spect to the 2006 survey (Website Optimization, 2008).

Separation between Presentation and Content

30

http://www.langrehotel.es/

Figure 6. LangrehOtel web-
site, as seen in the Lynx text
browser: a blank screen
where only the title is visible,
making this site totally inac-
cessible to text browsers,
braille devices, voice synthes-
isers, search engines, or any
other device that does not
support Flash (many mobile
phones, iPod, iPad…).

The problem with the above methods is that they abandon the idea
of HTML as a language for representing structured documents and
try to use if for things for which it was never conceived, specifying
how a document should look like, instead of defining its logical
structure. In addition to the aforementioned accessibility problems,
there are usability issues, too: users have accustomed to some fea-
tures of HTML documents when they are rendered by a web
browser, and anything that deviates from their expectations may
cause confusion. One example of this are the custom scrollbars,
many of them programmed in Flash, which can be found in many
sites, instead of the default scrollbar automatically provided by the
web browser through the native window system of the platform.
Not only must the user to learn how to use them, but sometimes
users not even notice them (Acebal, Cueva & Izquierdo, 2003;
Nielsen, 2005). Other issues are related with some browser features
that do not work (or, at best, behave differently), such as the back
button, the ability to increase or reduce the font size, the “find in
this page” option (Nielsen, 2000b), the secondary button of the
mouse (for example, to open a link in a new tab), etcetera.

Separation between Presentation and Content on the Web

31

PPrresenesentatational Elementional Elementsts

As it has been noted above, some of the presentational elements
that had been invented by browser vendors, to respond to the de-
mand of web designers to control the appearance of web pages,
were eventually incorporated to the W3C HTML specification.
Thus, CENTER element, for instance, was added to HTML 3.2 spe-
cification (Raggett, 1997). But the most (in)famous element of
those officially added to HTML specification was FONT. With it, de-
signers could change the colour and size of the font, and, in some
browsers, also the font face, through the face attribute, which was
finally also added to HTML 4.0 (Raggett, Le Hors & Jacobs, 1997;
Raggett, Le Hors & Jacobs, 1998). By including this element in the
specification, HTML lost its meaning as a language for represent-
ing structured documents, and soon web pages started to contain
more presentational code than the information and structure actu-
ally contained in them. An example of this —as well as of the use of
tables for layout and other common ills of the web a few years ago—
can be seen in figure 7, which depicts a piece of content of the Ya-
hoo! home page in 20031.

UUse of Tse of Tables fables for Laor Layyoutout

Tables had been absent from the first versions of HTML and were
added to HTML 3.2 (Raggett, 1997) as a subset of the table model
previously proposed by Ragget (Raggett, 1996). Even the specifica-
tion itself states that tables “can be used to markup tabular material
or for layout purposes” (emphasis is mine), although it is true that it
continues saying: “Note that the latter role typically causes prob-
lems when rending to speech or to text only user agents”. This was
fixed in HTML 4.0 (Raggett, Le Hors & Jacobs, 1997, §11.1), which
now specifies clearly that they are intended to arrange tabular data
and must not be used for layout purposes:

Tables should not be used purely as a means to layout document content
as this may present problems when rendering to non-visual media. Addi-
tionally, when used with graphics, these tables may force users to scroll

1 Accessible in web.archive.org/web/20030127104212/www.yahoo.com/

Separation between Presentation and Content

32

http://www.w3.org/TR/REC-html40-971218/struct/tables.html#h-11.1
http://web.archive.org/web/20030127104212/www.yahoo.com/

horizontally to view a table designed on a system with a larger display.
To minimize these problems, authors should use style sheets to control
layout rather than tables.

The reality, though, is that tables had already began to be used
almost exclusively for layout, once browser vendors implemented
them first as a proprietary extension and designers rapidly dis-
covered their potential. Prior to them, it was totally impossible, for
example, to achieve something apparently as simple as two columns
(remember that Cascading Style Sheets had not yet been invented).
The problem is that, whereas most of the other reviewed practices
remain only as vestiges of that pre-CSS era, and the use of font, for
instance, is now marginal, tables are still a widespread layout technique.

Why are Tables Bad for
Layout?

Much has been written about the problems of using tables for
layout (Lie & Bos, 2005, p. 8; Merikallio & Pratt, 2003; Chromatic,
2008; …). This section summarises and briefly discussed the main
ones.

Accessibility Issues
Probably the most cited reason against the use of tables for layout
is related to their accessibility flaws. In effect, tables may run into
accessibility issues, but it is also true that this is the most easily
solvable of their problems. This issue has to do with the correct
order of the content from a logical point of view, and with the
general recommendation of Web Content Accessibility Guidelines
1.0 (Chisholm, Vanderheiden & Jacobs, 1999, §3.3) of using “style
sheets to control layout and presentation”. More specifically, Tech-
niques for Web Content Accessibility Guidelines 1.0 states the fol-
lowing (Chisholm, Vanderheiden & Jacobs, 2000, §3.3):

Do not use tables for layout unless the table makes sense when linear-
ized. Otherwise, if the table does not make sense, provide an alternative
equivalent (which may be a linearized version).

As for the linearisation term that is mentioned in the quote above,
it is further explained in the HTML Techniques for Web Content
Accessibility Guidelines 1.0 (Chisholm, Vanderheiden & Jacobs,
2000, §5.3), and it basically consists on making sure that if the table

Separation between Presentation and Content on the Web

33

http://www.w3.org/TR/WCAG10/#gl-structure-presentation
http://www.w3.org/TR/WCAG10/#gl-structure-presentation
http://www.w3.org/TR/WCAG10-HTML-TECHS/#wrapped-text

</td><td align=right nowrap><a href=r/

xy>More Yahoo!...</td></tr>

</table>

<small><small>
</small></small>

<center>

<script language=javascript>

document.write('<div id=mdiv');

document.write('><table border=0 cellspacing=0 cellpadding=1

bgcolor=498eb6><tr><td><table border=0 width=100% cellspacing=0 cellpadding=0

bgcolor=white><tr><td align=right valign=top bgcolor=ebebeb nowrap width=160

rowspan=3><table border=0 cellspacing=0 cellpadding=0><tr><td align=right

valign=top nowrap><img src='+img1+'

width='+imgw+' height='+imgh+' border=0></td></tr>');

document.write('<tr><td align=center height=28 nowrap><font face=verdana

size=-2>'+txt1+'
');

document.write('</td></tr></table></td><td valign=top><img

src=http://us.i1.yimg.com/us.yimg.com/i/mntl/spo/03q1/sb_hdr_3.gif alt="Yahoo!

Sports" width=273 height=43 border=0></td></tr><tr><td nowrap align=center

valign=top><table cellspacing=0 cellpadding=1 border=0 bgcolor=f5af2a

width=97%><tr><td valign=top><table cellspacing=0 cellpadding=3 border=0

width=100% bgcolor=white><tr><td align=center nowrap><font face=verdana

size=-2>Final Score: Tampa Bay

48 - Oakland

21</td></tr></table></td></tr></table></td></tr><tr><td align=center

valign=top><table border=0 cellspacing=0 cellpadding=0 width=100%><tr><td

height=4 width=1 colspan=3><spacer type=block width=1

height=4></td></tr><tr><td width=6 rowspan=2><spacer type=block width=6

height=1></td><td valign=top><table border=0 cellspacing=0 cellpadding=0

width=100%><tr><td colspan=2>Daryl

Johnston:</td></tr><tr><td><img

src=http://us.i1.yimg.com/us.yimg.com/i/my/sound.gif border=0 hspace=0 vspace=0

alt=audio width=16 height=13></td><td><a href=s/

55406>Exclusive analysis</td></tr></table></td><td

valign=bottom align=right rowspan=2><img

Separation between Presentation and Content

34

src=http://us.i1.yimg.com/us.yimg.com/i/mntl/spo/03q1/mvpjackson.gif alt="MVP

Dexter Jackson" width=105 height=84 hspace=5 vspace=0

border=0></td></tr><tr><td>· <a href=s/

55408>Postgame News
· Box Score
· Photos - Slideshow
· <a href=s/

55409>More</td></tr></table></td></tr></table></td></tr></table></div>');

</script>

</center>

<small><small>
</small></small>

<table width=100% cellpadding=4 cellspacing=0 border=0 bgcolor=dfdfdf><tr><td

align=center> Y! Business Services -

Visit the Yahoo! Small Business Center</td></tr></table>

<table width=100% cellpadding=0 cellspacing=0 border=0 bgcolor=999999><tr><td

height=1><table cellpadding=0 cellspacing=0 border=0><tr><td

height=1></td></tr></table></td></tr></table>

<center><table width=95% border=0 cellspacing=0 cellpadding=2><tr>

<td width=30% valign=top nowrap>

• Web Hosting

• E-commerce

</td>

Figure 7. A very small portion of the HTML code for the Yahoo! home page in 2003 (web.archive.org/web/
20030127104212/www.yahoo.com/). It constitutes an excellent example of all the evils that afflicted the web for
some time: JavaScript generated content via document.write, intensive use of tables for layout, multitude of font
elements, width and colours of tables specified in the markup… As a result, the amount of information contained
in that piece of HTML is insignificant compared with the presentational code.

is read cell by cell, in order (for example, by a screen reader), it still
makes sense. A more detailed and updated information about this
concept is found on Techniques for WCAG 2.0 (Caldwell, Cooper,
Reid & Vanderheiden, 2008, G571, F492).

1 Ordering the content in a meaningful sequence, www.w3.org/TR/2008/NOTE-
WCAG20-TECHS-20081211/G57

2 Failure of Success Criterion 1.3.2 due to using an HTML layout table that does not make
sense when linearized, www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211
/F49

Separation between Presentation and Content on the Web

35

http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/G57
http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/F49
http://web.archive.org/web/20030127104212/www.yahoo.com/
http://web.archive.org/web/20030127104212/www.yahoo.com/
http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/G57
http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/G57
http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/F49
http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/F49

Anyway, the case is that using tables for layout does not neces-
sarily mean that the so built website is not accessible, if they are used
judiciously (and, certainly, a layout made up of nine nested tables is
not what I would judge as sound).

Maintenance difficulty
It is difficult not to agree with this issue… until one sees some
“pure” CSS layouts, which level of nested divs is even higher than
that of the worst HTML table-based layouts. Nevertheless, as a gen-
eral rule, it is true that deeply nested table-based layouts usually
are a source of headaches when it comes to redesign, or even just
to modify the content of a site, as is the case, for example, of the
Hook Mitchell website that was shown in figure 3, as it is explained
in Zeldman & Marcotte (2010, pp. 38–41), or the old version of
Gilmore Keyboard Festival website reviewed in Zeldman (2003, pp.
49–53), although in these two cases it is more due to the use of im-
ages instead of text than for their table-heavy markup.

The major maintenance problem with tables with respect to
CSS layouts is that whenever the layout changes, the markup of
all the pages of the website must be changed too. This may not be
an issue if a content management system (CMS) is being used in
the backend and, anyway, as this thesis states, this is almost always
the case also for CSS layouts, which often require changes in the
markup in addition to the style sheet.

They break separation between presentation and content
This is the insurmountable problem of table-based layouts: since the
visual structure of the page is hardcoded in the HTML document, it
destroys any possible separation between presentation and content:
the markup is closely bound to the final visual layout of the page.
Note that this does not necessarily imply that CSS layouts are better
(as it has been pointed out above and will be later demonstrated in
this thesis, most current CSS layouts suffer the same problem), but
it is more than enough to invalidate tables as a layout mechanism.

Why Are They Used for
Layout?

Until now some of the frequently cited reasons against the use of
tables for layout have been reviewed. But, if they have so bad reputa-

Separation between Presentation and Content

36

tion among web design community… why are they yet so used for
layout purposes? Leaving aside browser inconsistencies in CSS sup-
port (something which this thesis is not concerned, since it assumes
a best-case scenario of a perfect CSS 2.1 implementation), there is
one reason that is is hardly debatable: as a general rule, table-based
layouts are much easier to achieve than their CSS equivalents. As Budd has
stated (2003):

I’m sure we’ve all found ourselves writing fairly complicated CSS to do
something that would be trivial using tables.

Furthermore, there are certain tasks that are not possible to do with
CSS —at least, not without adding extra markup or altering the lo-
gical order of the content— that are very easy with tables; for in-
stance, vertical alignment.

CCascading Stascading Style Sheetsyle Sheets

In an attempt to redress the situation and return HTML to its origin
as a language for structured documents, W3C developed Cascading
Style Sheets (Lie and Bos 1996). Now, those presentational ele-
ments and attributes that had populated the web should have been
removed from the HTML.

Cascading Style Sheets (CSS) are widely used nowadays, and
they have contributed to recapture the original purpose of HTML,
getting it rid of FONT tags and other presentational elements and at-
tributes. But, as with any technology, using style sheets does not
guarantee that we are separating presentation and content. One of
the most common errors, specially among beginners, is the use of
extra div elements and unnecessary classes and identifiers, which
has been known as classitis and divitis (Zeldman, 2003, pp. 182 and
184).

Other problem of Cascading Style Sheets is that, as this thesis
states —and will be demonstrated in further chapters—, in its cur-
rent state it does not provide a true separation between presentation
and content.

Separation between Presentation and Content on the Web

37

chapters/ref

Conclusions

Other authors have already pointed out this problem. Thus, Meyer
(2003a) says that, contrary to what some may have claimed or im-
plied, it is not possible to create an arbitrary structure with no con-
sideration toward its presentation. Others directly refers to this sep-
aration as a myth (Stain, 2000). This thesis assumes that hypothesis
as a starting point, and chapters 5, 6, and 7 will demonstrate that,
in effect, that separation is not currently possible, and that it is due
to the lack of true layout mechanisms in CSS, as stated on Chapter
8. Chapter 9 proposes the solution to solve that problem, adding
to CSS a template-based layout mechanism, in an attempt to make
Zeldman’s words (2001) true:

We all know the future is about web standards. And web standards are
about the separation of style from content —presentation from struc-
ture— design from data.

Separation between Presentation and Content

38

http://www.meyerweb.com/eric/thoughts/200310.html#t200310015
http://www.alistapart.com/articles/separation/
chapters/css/css.html#ch-css
chapters/csslayout/csslayout.html#ch-csslayout
chapters/casestudies/casestudies.html#ch-casestudies
chapters/theproblem/theproblem.html#ch-theproblem
chapters/theproblem/theproblem.html#ch-theproblem
chapters/solution/solution.html#ch-solution

What Layout Is
This chapter, as its title indicates, is aimed to provide
the background on layout that is needed to
understand what will come later. After defining which
is the main function of graphic design, and some of the
basic principles of layout, the chapter then goes on to
the subject of grid systems, a classical concept of
graphic design theory that, as will become apparent
later, is essential to this thesis and to the solution
proposed in it.

3

Introduction

Webster defines layout as “1 : the plan or design or arrangement of
something laid out: as a : (dummy 5 b) a set of pages (as for a news-
paper or magazine) with the position of text and artwork indicated
for the printer b : final arrangement of matter to be reproduced es-
pecially by printing”; and lay out as “1 : to put into a proper order
or into a correct or suitable sequence, relationship, or adjustment”.

For Wiktionary, layout is “(publishing) the process of arranging
editorial content, advertising, graphics and other information to fit
within certain constraints.”

Similarly, Wikipedia, defines page layout as “the part of graphic
design that deals in the arrangement and style treatment of elements
(content) on a page”.

Let us forget layout for a moment and concentrate on the dis-
cipline to which it belongs: graphic design. Next section offers a sum-
marily introduction to it, enumerating and succinctly describing
some of its basic elements and principles, before to explain what lay-
out is and move on to the theory of grid systems. Needless to say,
this is not —nor it can be— a treatise on graphic design, but, being
this a dissertation that has the word “layout” on its title, it is com-
pulsory to provide some background on this field.

Nevertheless, I have tried to be as concise as possible and de-
scribe only those aspects of graphic design that have some bearing
on the matter of study of this thesis, and on the proposed solution.

What Is Graphic Design?

To understand the meaning of design is… to understand the part form
and content play… and to realize that design is also commentary, opin-
ion, a point of view, and social responsibility. To design is much more
than simply to assemble, to order, or even to edit; it is to add value and
meaning, to illuminate, to simplify, to clarify, to modify, to dignify, to
dramatize, to persuade, and perhaps even to amuse.

—Paul Rand (as cited in Samara, 2007, p. 6)

What Layout Is

40

Design is not just what it looks like and feels like. Design is how it works.
—Steve Jobs (2003)

If we asked professional designers what is the main function of
graphic design, no doubt we would obtain many different answers,
but, surely, most of them would be variations of the same essential
idea: to communicate. Thus, graphic design is not (only) “to make
things look pretty” (despite the many comments in response to
McWade’s question (2009) that express in such terms), but to convey
a message, using tools such as images and typography: “graphic
design is a creative process that combines art and technology to
communicate ideas” (Poggenpohl, 1993); “a graphic designer is
a communicator: someone who takes ideas and gives them visual
form so that others can understand them” (Samara, 2007, p. 6);
“a truly effective graphic communication is the combined result
of both message content and message presentation” (Brahmachari,
2000). In other words, the purpose of graphic design (and what dif-
ferentiates it from other disciplines in visual arts) is not to alter the
message (which is defined by the client, does not emanate from the
designer), but to clarify it and communicate it effectively.

But, what are the tools with which the graphic designer counts
to carry out his purpose? The paragraph that follows to the quote
above by Samara (Samara, 2007, p. 6) give us some hints about it:

The designer uses imagery, symbols, type, color, and material —whether
it’s concrete, like printing on a page, or somewhat intangible, like pixels
on a computer screen or light in a video— to represent the ideas that
must be conveyed and to organize them into a unified message.

Samara, in the preceding quote, has enumerated some of the basic
building blocks of graphic design. Graphic design theory distin-
guishes between elements and principles of graphic design. Al-
though the concrete elements and principles may vary depending
on the sources, most books and syllabi of introductory courses agree
on at least the following basic elements of design: line, shape, form,
space, and colour. Images and type are not formal elements of design,
but they both can function as such in page layout (Evans, 2005, pp.
40 and 42).

What Is Graphic Design?

41

As it has been stated in the introduction of this chapter, this
dissertation is not the right place to describe them, but there is
one that, because of its importance, deserves some discussion: ty-
pography (or type). Next section explains its close relationship with
layout and mentions some differences between print and web typo-
graphy. As for the principles, since they are closely related with lay-
out, they will be described in that section.

Typography

Typography exists to honor content.
—Bringhurst (2005)

Typography is sometimes misconceived as the font types used in a
text. But, notwithstanding that is, of course, an essential component
of any design, typography is much more than simply choosing the
right typefaces for a project. It fact, in graphic design theory layout
is usually considered a subset of typography. Thus, Cullen (2005,
p. 101), differentiates between macro and micro perspectives in ty-
pography: whereas by taking a micro perspective the designer con-
centrates on details such as font type and size, kerning, spacing, hy-
phenation, punctuation marks, etcetera, the macro view deals with
the overall design layout.

I am not going to enter into details about these micro typo-
graphic issues because, despite the undoubtedly importance that
they have, both in printed and electronic media, they usually do not
present difficulties to be well defined in CSS, with some exceptions,
from which is specially notorious the absence of support in CSS2 for
hyphenation, which, together with the lack of control over screen res-
olution, the ability of web users to resize text, and the usually poor
paragraph-breaking algorithms of web browsers, makes justification
on the web almost impracticable. Vertical alignment of text is de-
cidedly another issue in CSS, too.

Another important difference between print and web typo-
graphy is the limited fonts that a designer can safely use on the web,
when compared to the plethora of fonts available in traditional print
design (Lie, 2007). Although CSS has provided support for web

What Layout Is

42

fonts through the @font-face construct introduced in CSS2 (Bos,
Lie, Lilley & Jacobs, 1998), due to legal issues, it has not been until
very recently when they are becoming a reality thanks to initiatives
like Typekit1 or FontSkirrel2.

Line LLine Lengthength

Line length has an extraordinary effect on the legibility of the page
(which is, after all, the ultimate goal of typography). According to
Bringhurst (2005, p. 26), “the 66‑character line (counting both let-
ters and spaces) is widely regarded as ideal”, although anything
from 45 to 75 characters is usually considered satisfactory. It could
be argued, though, that Bringhurst’s work, as authoritative as it is,
only refers to printed, paged media, and, therefore, its conclusions
can not be directly translated as such to the web.

Mills & Weldon (1987), in their review of empirical studies
concerning the readability of text from computer screens, did not
reach any definitive conclusion, apart than the fact that more re-
search on this field was needed. It must be also considered that the
features of existing CRT displays by the time their review was con-
ducted had nothing to do with modern monitors, neither in quality
nor size. However, one of the conclusions that they draw as work-
ing hypotheses, is that “text with 80 characters per line on a screen
width seems easier to read than text with 40 characters per line on a
line of the same length” (p. 353). More recent studies seem to con-
firm that reading on the screen calls for slightly longer lines than
on paper. Thus, Shaikh (2005), in a study about the effects of line
length on reading online news, found that reading rates were fastest
at 95 characters per line than at 35, 55, or 75 (the other line lengths
considered). However, his study must be taken cautiously, since it
was made with only twenty participants. Bernard, Fernandez & Hull
(2002), in a similar study, did not found significant differences in
reading time or reading efficiency between full, medium, and short
line lengths, although adult participants preferred medium and nar-
row length lines, whereas most children opted for narrow lines. As

1 typekit.com
2 http://www.fontsquirrel.com/

Typography

43

http://typekit.com/
http://www.fontsquirrel.com/

Wilkinson (2009) and Weinschenk (2003) has suggested, there is
not yet enough research as to establish rigid guidelines with regards
to line length for web pages. In addition, as had already been stated
in the review of Mills & Weldon (1987, p. 341), there are many
other formatting factors that influence readability, like typeface and
font size, line height, or colour. Anyway, whatever be the ideal line
length on the web, it seems obvious that any layout mechanism
should allow the author to specify the width of the layout in terms
of the font size.

Layout

Although some general definitions of layout have been provided in
the opening section of this chapter, its crucial importance to this
thesis makes it deserve a more detailed explanation. First, a more
formal definition comes from Ambrose & Harris (2005):

Layout is the arrangement of the elements of a design in relation to
the space that they occupy and in accordance with an overall aesthetic
scheme. This could also be called the management of form and space.
The primary objective of layout is to present those visual and textual
elements that are to be communicated in a manner that enables the
reader to the receive them with the minimum of effort. With good layout
a reader can be navigates through quite complex information, in both
print and electronic media.

The mission of layout is therefore to create a clear visual hierarchy
that matches the logical structure of the message to be communic-
ated, be it a book, a magazine cover, a poster, a business card, or
anything else. To accomplish this task, the designer relies on some
design principles, or compositional factors, which, combined with
type, colour, texture, and the rest of basic elements of design, con-
tribute to create a visual structure that conveys the message and is
appealing for the reader. Although there is no consensus on which
these principles of design are, some of them are the most frequently
cited as the most relevant for layout, and will be briefly reviewed in
the following subsections. But, before to describe them, it is worth

What Layout Is

44

to mention some fundamental rules upon which the theory of layout
in graphic design is built.

GGestalt Pestalt Principlesrinciples

Most layout principles are based on a set of laws and principles col-
lectively known as the Gestalt principles of perception. Gestalt theory
was developed by Austrian and German psychologists in the late
1800’s and the early 1900’s, and provide a theoretical background
that explains human perception and our tendency to group things
(Graham, 2008). Gestalt visual laws provide scientific validation of
compositional structure, and are therefore an essential part of any
graphic design curriculum. Lynch and Horton (2009) cite the fol-
lowing gestalt principles among the most important for page layout:

Proximity
Elements that are close to each other are perceived as more related
than elements that lie farther apart (see figure 1.1).

Similarity
Viewers will associate and treat as a group elements that share con-
sistent visual characteristics. In figure 1.2 it can be appreciated how
similarity (or, in this case, dissimilarity) can be achieved through the
use of several elements of design, such as shape (first row is per-
ceived as different from the others because it is made of circles in-
stead of squares) or colour (third row).

Continuity
Humans prefer continuous, unbroken contours and paths, and the
vast majority of viewers will interpret figure 1.3 as two crossed lines,
instead of four lines meeting at a common point.

Closure
We have a powerful bias to see completed figures, even when the
contours of the figure are broken or ambiguous. For example, in fig-
ure 1.4 we see a white rectangle overlying four circles, and not four
circles, each having a section missing.

Layout

45

#1 Proximity between elements
causes us to see columns.

#2 Similarity causes us to see re-
lated horizontal rows.

#3 Continuity is the reason why
we prefer to see two lines
crossing, instead of four lines
meeting in the middle.

#4 Closure causes us to see a
white square, instead of four
broken circles.

#5 The classic Rubin Vase illusion is an example of figure-ground
relationships: either a vase or two face profiles can be seen in
the figure. As the relative size of the vase increases, it tends to
dominate over the faces.

#6 Uniformity allows us to see a
blue column and a green group.

#7 Uniformity is a common mech-
anism for organising user inter-
faces.

#8 Uniformity, enclosure, and
proximity help to distinguish
groups.

Figure 1. Some of the most relevant Gestalt principles for page layout.

What Layout Is

46

Figure-ground relationships
In figure-ground reversal the viewer’s perception alternates
between two possible interpretations of the same visual field: either
a goblet or two faces can be seen in figure 1.5, but both can not be
seen at once. Proximity has also a strong effect on figure-ground
relationships: it is easier for most people to see the goblet when it
is wider and the faces are farther apart. Also, visual elements that
are relatively small will be seen as discrete elements against a larger
field. The small element will be seen as the figure and the larger field
as the ground around the figure.

Uniformity
Uniformity refers to relations of elements that are defined by en-
closing elements within other elements, regions, or discrete areas of
the page (see figures 1.6, 1.7, and 1.8).

HoHow Ww We Read a Pe Read a Pageage

As it has been stated in introduction of this section, one of the cru-
cial aspects of layout is that, with it, the designer establishes a hier-
archy among the elements of the page, giving more prominence to
the most important elements, and guiding the eyes of the reader
through the overall design. But, although the designer can thus in-
fluence the visual structure and the order in which the different ele-
ments of the design are perceived, even in the absence of a con-
scious layout effort by the designer (let us think, for example, in a
dull page of text), there are certain areas of a page that are some
areas of the page that are more active, whereas others are more pass-
ive.

Specifically, humans (in western culture) tend to start scanning
a page at the top left corner and then follow a diagonal path until the
right bottom corner. This well-known pattern is shown in figure 2,
due to Ambrose & Harris (Ambrose & Harris, 2008, p. 14).

Interestingly, the above mentioned pattern does not apply ex-
actly equal to the web. This is probably because, as has been re-
peatedly said by usability experts, people do not read web pages, but scan
them (Nielsen, 1997a, 2000, p. 104; Krug, 2000, p. 22). Eyetracking

Layout

47

Figure 2. When faced with a
new page of information, the

human eye habitually looks
for an entrance at the top left
and scans down and across to
the bottom right corner (Am-
brose & Harris, 2008, p. 14).

Figure 3. Users tend to scan
web pages following an F-pat-
tern. Some authors also refer
to a “golden triangle’, highly
dependent on the fold point

of the page.

What Layout Is

48

studies (Nielsen, 2006b) have proved that users on the web scan
pages following what has been named an F-pattern, first quickly
scanning across the top from left to right in two stripes, and then
scanning down the page as they rapidly move forward in search
of something meaningful (Ambrose & Harris, 2008, p. 18). When
combined with page fold (the imaginary line that limits what the
user can see before having to scroll down), gives as a result the pat-
tern depicted by Lynch and Horton (2009) in figure 3.

But the F-pattern can not be considered an absolute truth. First,
as Lynch and Horton (2009) have pointed out, Nielsen’s study
(2006b) is biased toward web pages dominated by text information,
and, as users are learning to identify standard components of web
pages, such as navigation, shopping cart, search, etcetera, new
trends are emerging that will eventually change the best practices for
page layout on the web.

In addition, as it happens in print media, web designers have the
capability of changing these common patterns employing the same
principles of layout that are used in traditional graphic design.

HierHierararchchyy

Whereas design elements, such as colour, form, image, space, and
typography collaborate to convey the intended message, it is when
the designer activates the page through the placement of the visual
elements and all the components are clearly interrelated that the
whole design makes sense. That ordering system, or hierarchy,
defines the importance for every visual element and determines
their sequence through the design (Cullen, 2005, p. 73).

Hierarchy can be achieved with an appropriate use of design
elements and other design principles, such as alignment, scale, or em-
phasis.

Grid Systems

Simply stated, a grid is no more than a series of intersecting axes that
create horizontal and vertical divisions of space on the page (Cul-
len, 2005). Although neither the grid nor even graphic design were

Layout

49

Neutral This illustration shows a neutral page with no
hierarchy between the two text columns. A reader will
naturally enter the design at the top left.

Position An obvious placement of a design element
introduces a hierarchy, such as this lone heading on
the verso page.

Position and size Positioning an element in the entry
hotspot while altering its size and introducing spacing
establishes its dominance in the hierarchy.

Position, size, and emphasis Another technique is
to add extra emphasis to an element to cement its
position at the top of the hierarchy, as seen in the use
of colour above.

named as such until the mid-twentieth century, its use dates from
antiquity, and can be found in ancient art, architecture, urbanism,
and other fields. One of the most notorious modern uses of grid in
urban city planning is that of Barcelona Eixample, shown in figure 5.

Grids were born in Switzerland after World War II, when the
first examples of printed matter designed with the aid of a grid ap-
peared, as a response to the chaotic layouts that Industrial Revolu-
tion had brought: images, advertisements, photographs, along with

What Layout Is

50

Figure 5. The Eixample of
Barcelona is one of the most
evident uses of grids in city
planning. It was conceived by
the visionary Ildefons Cerdà
in the 1850’s as an expansion
of Barcelona between the old
city and the surrounding
small towns. It consists of
straight streets crossed by a
long wide diagonal, and
building blocks of even size
(113 meters each side), with
its characteristic chamfered
street corners. Picture from
Institut Cartogràfic de
Catalunya (www.icc.es).

an increasing array of typefaces, suddenly competed for attention,
with no precedence in the classical book (Roberts, 2007, p. 13).
This was identified as a problem that had to be solved. But the grid
term did not yet exist as such. It was first named and described by
Müller-Brockmann (1971), although it was not until the seminal
book of the same author (1981) when the grid construction was sys-
tematically explained.

ElemenElements of a Gridts of a Grid

Every grid, no matter how complex it may become, is made of the
same basic elements, which are: margins, markers, columns, flowlines,
spatial zones, and modules (see figure 6). These elements can be com-
bined or omitted from the overall structure to accommodate to the
needs of each concrete design (2009):

• Margins represent the amount of space between the trim size, in-
cluding gutter, and the page content. Margins can also house sec-
ondary information, such as notes and captions.

• Markers help a reader navigate a document. Indicating placement
for material that appears in the same location, markers include page
numbers, running heads and feet (headers and footers), and icons.

Grid Systems

51

http://www.icc.es/

Figure 6. The main components of a grid (margins, markers, columns, flowlines, spatial zones, and modules) are
depicted in context (within a grid) and briefly explained. Figure and descriptions are from Tondreau (2009).

• Columns are vertical containers that hold type or images. The width
and number of columns on a page or screen can vary, depending on
the content.

• Flowlines are alignments that break space into horizontal bands.
Not actual lines, flowlines are a method for using space and ele-
ments to guide a reader across a page.

What Layout Is

52

• Spatial zones (also known as modules) are alignments that break
space into horizontal bands. Not actual lines, flowlines are a method
for using space and elements to guide a reader across a page.

TTypes of gridsypes of grids

There are as many types of grids as designers. However, it is possible
to identify and classify a few basic grid structures.

• A single-column grid is generally used for continuous running text,
such as essays, reports, or books. The main feature on the page or
spread is the block of text.

• A two-column grid can be used to control a lot of text or to present
different kinds of information in separate columns. A double-
column grid can be arranged with columns of equal or unequal
width. In ideal proportions, when one column is wider than the oth-
er, the wider column is double the width of the narrow column.

• Multicolumn grids afford greater flexibility than single or two-
column grids, combine multiple columns of varying widths and are
useful for magazines and websites.

• Modular grids are best for controlling the kind of complex inform-
ation found in newspapers, calendars, charts, and tables. They com-
bine vertical and horizontal columns, which arrange the structure
into smaller chunks of space.

• Hierarchical grids break the page into zones. Many hierarchical
grids are composed of horizontal columns.

Grid Systems

53

Layout Languages
Whereas this thesis is focused on Cascading Style
Sheets, and so is the proposed solution, the layout
issues addressed on it are by no means new. Not only
from the graphic design perspective, for which the
previous chapter have provided the background on
layout and grid systems on which the proposed
solution is based, but the subjects of layout in general,
and document formatting in particular, have had a
long tradition in Computer Science, from graphical
user interfaces to document engineering or electronic
publishing.

4

Introduction

Although, apparently, the languages reviewed in this chapter may
seem somehow disconnected, or even arbitrarily chosen, their pur-
pose is to provide a review of how the issue of layout is addressed in
them. Specifically, the languages reviewed in this chapter belong to
the following categories:

• User interface languages
• Graphical libraries of programming languages

User Interface Languages

By user interface languages I mean whatever language specifically ori-
ented towards the creation of graphical user interfaces.

XAMLXAML

XAML (Extensible Application Markup Language) is a markup lan-
guage for declarative application programming (Microsoft, 2009b). It
has been created by Microsoft and is built into the Windows
Presentation Foundation (WPF), which, in turn, is the platform for
building the graphical user interface of both client and browser-
based applications, inside .NET framework.

WPF has an extensive set of features that include vectorial
graphics, 3D rendering, audio and video players, or even anima-
tions, among many others. It is worth to mention the distinction
that WPF makes between flow documents and fixed documents, resem-
bling what some desktop publishing tools do.

But what is relevant to this thesis are the layout capabilities that
XAML has to offer. Although this dissertation is not the place for ex-
plaining in detail how it works, its main controls will be described,
so that they can be later compared with the layout features of CSS,
as well as with the solution proposed by this thesis.

Layout System Overview The layout system in Windows Presentation Foundation is
based on relative positioning. This must not be confused with the relat-
ive positioning in CSS. Whereas in the latter, the term relative means

Layout Languages

56

that a so positioned box is shifted with respect to its original position
in the normal flow of the document (Bos et al., 2009, §9.4.3), relat-
ive positioning in WPF refers to the ability of the layout system to
adapt to changes in window size and display settings (which in CSS are
called liquid and elastic layouts, described on Chapter 6, on pages 112
and 113, respectively). More specifically, in Windows Presentation
Foundation, the layout of elements on the screen is the result of a
negotiation between the control to be rendered and its parent (Mi-
crosoft, 2009a, Layout section):

1 First, the control tells its parent what location and size it requires.
2 Secondly, he parent tells the control what space it can have.

As the documentation itself acknowledges, this may be an intensive
process, being greater the number of calculations made the larger
the number of children elements is (Microsoft, 2009c, The Layout
System section), because, even in its simplest form, layout is a recurs-
ive process in which, for each child of the control to be rendered,
at least two passes are performed: one for measuring the size of the
element, and another for arranging it in its container.

Layout ControlsWindows Presentation Foundation (and therefore XAML)
provides the following controls for most common layouts:

Canvas

Child controls provide their own layout.

DockPanel

Child controls are aligned to the edges of the panel.

Grid

Child controls are positioned by rows and columns.

StackPanel

Child controls are stacked either vertically or horizontally.

User Interface Languages

57

http://msdn.microsoft.com/library/aa970268.aspx#Layout
http://msdn.microsoft.com/library/ms745058.aspx#LayoutSystem_Overview
http://msdn.microsoft.com/library/ms745058.aspx#LayoutSystem_Overview

VirtualizingStackPanel

Child controls are virtualized and arranged on a single line that is
either horizontally or vertically oriented.

WrapPanel

Child controls are positioned in left-to-right order and wrapped to
the next line when there are more controls on the current line than
space allows.

Some of them are the typical controls that we can find on graphical
libraries of many programming languages, like the canvas, which
defines an area within child elements are positioned using coordin-
ates, very similar to what can be achieved in CSS using absolute pos-
itioning. And, like absolute positioning too, it is the simplest control
to implement, since it does not have associated any layout policy:
the user (the programmer, in this case) is responsible for controlling
the position and dimensions of child elements, and they are never
resized. VirtualizingStackPanel, and its counterpart, Virtualiz-
ingStackPanel (the virtualizing prefix merely refers to an optimisa-
tion feature of WPF under which only those elements that are vis-
ible on the screen are generated), are also simple controls that al-
lows child elements to be positioned one after another, either hori-
zontally (in a row) or vertically (in a column), which might be com-
pared (to a certain extent) to the way in which inline and block boxes,
respectively, are laid out in CSS (although these controls provide
some additional features that are not possible in HTML/CSS, like
logical scrolling, namely, the ability to scroll to the next element, in-
stead of the physical scrolling to which we are used to on the web).
This is also the case of WrapPanel, which behaves very similar to the
normal flow of CSS, positioning its children in sequential position
from left to right, breaking content to the next line at the edge of the
containing box.

DockPanel, on the other hand, allows to position elements relat-
ive to both other elements within the same container and the edges
of the container (by means of the property Dock and the values Left,
Top, Right, and Bottom). In addition, it permits the last element to

Layout Languages

58

fill the remaining space. Although, with the possible exception of
this last feature, the layout provided by this control is not nothing
that can not be achieved in CSS with a combination of floats, pos-
itioning, margins, and the rest of mechanisms that will be reviewed
on Chapter 5, it is worth to include an example to later compare
how the same layout is much easier to achieve using this control in
XAML than with HTML & CSS. Such a example is provided in fig-
ure 1, which shows the XAML code that gives as a result the layout
shown in figure 2.

Grid control on WPF
provides a mechanism for
creating grids, the graphic
design system that was intro-
duced on Chapter 2.

The most interesting control for the purposes of this thesis is
also the most flexible (and, for that very reason, the most complex)
of all the layout components of Windows Presentation Foundation:
the Grid. While the layouts allowed by the aforementioned controls
can be reproduced, to a greater or lesser extent, in CSS, this control
provides a convenient way to deal with grids, something that, despite
the interest that this subject has caused in the web standards com-
munity in recent years, is not possible with CSS.

Grids on XAML
Although I am not going to dwell on details about the multiple fea-
tures of Grid control and the possibilities it brings to create complex
layouts, there are, though, several aspects that must be at least men-
tioned, because they closely match the solution purposed in this
thesis to the problem of layout on the web.

But, what does this control essentially do? Basically, it allows
the designer to define a structure of rows and columns. Although, at
first glance, it could be thought as an HTML table, there is a sub-
stantial difference: the content is not placed inside the cells defined
by the grid. Instead, the grid only defines how the layout is (how
many rows and cells it has). It is later, once the grid have been
defined, when the content is assigned a position corresponding to a
cell in the grid (cells can span several rows and columns, and this is
indicated for each concrete block of content too). This can be easily
observed in the XAML code of figure 3, which defines a grid of four
rows and three columns, where the first and last rows span the three
columns (the resultant layout can be seen in figure 4).

User Interface Languages

59

chapters/css/css.html#ch-css

Figure 1. An XAML page that uses a DockPanel control to create the layout shown in figure 2.

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

WindowTitle="DockPanel Sample">

<DockPanel LastChildFill="True">

<Border Height="25" Background="SkyBlue" BorderBrush="Black"

BorderThickness="1" DockPanel.Dock="Top">

<TextBlock Foreground="Black">Dock = "Top"</TextBlock>

</Border>

<Border Height="25" Background="SkyBlue" BorderBrush="Black"

BorderThickness="1" DockPanel.Dock="Top">

<TextBlock Foreground="Black">Dock = "Top"</TextBlock>

</Border>

<Border Height="25" Background="LemonChiffon" BorderBrush="Black"

BorderThickness="1" DockPanel.Dock="Bottom">

<TextBlock Foreground="Black">Dock = "Bottom"</TextBlock>

</Border>

<Border Width="200" Background="PaleGreen" BorderBrush="Black"

BorderThickness="1" DockPanel.Dock="Left">

<TextBlock Foreground="Black">Dock = "Left"</TextBlock>

</Border>

<Border Background="White" BorderBrush="Black" BorderThickness="1">

<TextBlock Foreground="Black">This content will "Fill" the remaining

space</TextBlock>

</Border>

</DockPanel>

</Page>

Grid Units
Three unit types are allowed for specifying the width and height of
columns and rows, respectively:

Auto

The size is determined by the size properties of the content object
(it is the default behaviour that has been described above).

Layout Languages

60

Figure 2. A WPF window that
uses a DockPanel control to
lay out its components. Child
elements are arranged based
on the order in which they are
defined in the XAML source
code. Therefore, they are rel-
ative to other elements, but
also to the edges of the con-
tainer, by means of the Dock

property of this class, which
allows to align a component
to the left, top, right, and bot-
tom of the parent, in a some-
what similar manner to what
float property does in CSS.

Pixels
If a number is specified as the width or height value of a column or
row of the grid, it represents a size in pixels.

* (star)
The value is expressed as a weighted proportion of available space.

The last value, star (or asterisk), is the most interesting for the pur-
poses of this thesis, because it allows to specify different levels of
flexibility for row heights and column widths. For instance, in the ex-
ample above, by setting a height of * to the third row, cells on that
row adapt to the height of the window, enlarging or shrinking as
needed to fill all the available height. There is nothing similar to this
ability currently in CSS.

XULXUL

XUL (XML User Interface Language) is a markup language created
by Mozilla for building the user interface of cross-platform applica-
tions. It does not contain so many features as XAML, although the
purpose of both languages is similar: to provide a manner of de-
fining the graphical interface library of an application in a declarat-

User Interface Languages

61

<Window x:Class="GridLayout.GridWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Grid Layout Example in XAML" Width="768" Height="480">

<Window.Resources>

<Style TargetType="TextBlock">

<Setter Property="FontSize" Value="24"/>

</Style>

</Window.Resources>

<Grid>

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="Auto"/>

<RowDefinition Height="*"/>

<RowDefinition Height="100px"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition/>

<ColumnDefinition/>

</Grid.ColumnDefinitions>

<TextBlock Grid.ColumnSpan="3" Background="#CBF50F">This text spans the

whole first row</TextBlock>

<TextBlock Grid.ColumnSpan="2" Grid.Row="1" Background="#C5E88A"

TextWrapping="Wrap">Lorem ipsum ... </TextBlock>

<TextBlock Grid.RowSpan="2" Grid.Row="1" Grid.Column="2"

Background="#FF333838" Foreground="White">This is the sidebar</TextBlock>

<TextBlock Grid.Row="2" Grid.Column="0" Background="#799666"

TextWrapping="Wrap">A single cell</TextBlock>

<TextBlock Grid.Row="2" Grid.Column="1" Background="#9CD989">Another

one</TextBlock>

<TextBlock Grid.ColumnSpan="3" Grid.Row="3" Background="#95AB3C">This is

the footer</TextBlock>

Layout Languages

62

</Grid>

</Window>

Figure 3. XAML code for the grid layout shown on figure 4. Note that first, the grid is defined, inside the element
Grid, and then each piece of content indicates its position into the grid by means of Grid.Row and Grid.Column at-
tributes. Interestingly, is also each content element that defines how many rows and columns it spans, instead of
leaving that decision to the grid itself, as is done in the Template Layout Module, the solution proposed in this
thesis for CSS3. This resembles the notion of modules in grid system theory (described on Chapter 3, p. 53).

Figure 4. A WPF window that
uses a Grid control to create a
grid of four rows and three
columns (4 × 3) and then lay
out some content into the
cells of the grid.

ive way, so that they are independent of the programming language
(and, in the case of XUL, of any platform, too, since it allows to cre-
ate the GUI of an application for any operating system in which it
runs, without depending on any specific native window system).

To accomplish this task, XUL offers controls for the most com-
mon widgets of graphical user interfaces: windows, buttons, input
fields, toolbars, lists and tables (trees, in XUL terminology), etcetera.
In addition, it provides support for scripting, and integration with
programming languages through XPCOM and XPConnect.

Again, these are not the pertinent features for this research. As
with XAML, what this thesis is concerned is about the layout capab-

User Interface Languages

63

ilities of XUL, in order to be compared to those of CSS. Therefore,
the following pages are aimed to briefly review such layout features.

The Box Model

The simplest layout compon-
ents in XUL are boxes, which
allow to lay out elements ho-

rizontally or vertically.

As in CSS, layout in XUL is based on boxes inside boxes. In its
most basic form, a box allows lay out its children in one of two ori-
entations, either horizontally or vertically. Various attributes placed
on the child elements in addition to some CSS style properties con-
trol the exact position and size of the children (Mozilla, 2007).

<hbox>

<!-- horizontal elements -->

</hbox>

<vbox>

<!-- vertical elements -->

</vbox>

In addition to hbox and vbox, XUL also contains a generic box that
can work like an horizontal or a vertical box just changing the value
of its orient attribute, which may be useful if the orientation of the
box needs to be changed dynamically, from JavaScript or any other
programming language.

It is possible to achieve many different layouts with only these
two types of boxes, simply by nesting them according to our needs.
The extra flexibility comes from several attributes of these elements,
of which the most important for layout are the following:

align

The align attribute specifies how child elements of the box are
aligned when the size of the box is larger than the total size of the
children. Note that for boxes that have horizontal orientation, it
specifies how their children will be aligned vertically, and vice versa:
for vertical oriented boxes, it specifies how their children are aligned
vertically. Its possible values are: start, center, end, baseline (ho-
rizontal boxes only), and stretch.

While the meaning of the other values is quite obvious, it is
worth to briefly explain how the stretch value affects the layout of
the child elements of the box to which it is applied, causing them to

Layout Languages

64

stretch until fit the size of the box. Using it, it is very easy to achieve, for
instance, equal-height columns, something that is only possible in
CSS using workarounds.

pack

It is the opposite of the align attribute: it allows to align the child
elements of the box when it is larger than the size of the children,
but, in this case, it defines the horizontal alignment when it is ap-
plied to boxes with horizontal orientation, and the vertical align-
ment for vertically oriented boxes. Only admits three values: start,
center, and end.

flex

This attribute is the most interesting for the purposes of this review,
since, although for element widths it behaves like percentages in
CSS, there is nothing similar in CSS for the height of the elements.
It defines the flexibility of an element, which, according to the XUL
reference (Mozilla, 2009d), “indicates how an element’s container
distributes remaining empty space among its children. Flexible ele-
ments grow and shrink to fit their given space. Elements with larger
flex values will be made larger than elements with lower flex values,
at the ratio determined by the two elements.”1

In other words, this attribute behaves like the star (*) did for
width and height values in XAML: using flex it is possible to define
constraints for row heights and column widths, so that they are flex-
ible (that is, they adapt to the size of their container) but retaining
the proportions among them. Thus, let it be the following code:

<vbox flex="1">

...

</vbox>

<vbox flex="2">

...

</vbox>

1 Mozilla (2008). flex. Retrieved from https://developer.mozilla.org/en/XUL/At-
tribute/flex/

User Interface Languages

65

https://developer.mozilla.org/en/XUL/Attribute/flex/
https://developer.mozilla.org/en/XUL/Attribute/flex/

Figure 5. Combining boxes
with different orientations

and flexibilities is possible to
recreate in XUL a similar lay-
out to that shown in figure 4.

<vbox height="185">

...

</vbox>

<vbox height="1">

...

</vbox>

It defines four rows, of which the first, second, and fourth are flex-
ible, the second being the double of the first and fourth, which are
of equal height. Note that the third row has an explicit height of 185
pixels, and that is what makes this property so interesting for the
purposes of this thesis: it allows to mix fixed and flexible rows and
columns, and the flexible ones automatically adapt to the remaining
room, once discounted the size of the fixed ones, something that is
not currently possible in CSS.

Once the main properties of boxes have been enumerated and de-
scribed, they will be put together in the following example, which
reproduce a layout very similar to that that has been done earlier in
this chapter with XAML.

Layout Languages

66

<?xml version="1.0"?>

<?xml-stylesheet href="css/boxes.css" type="text/css"?>

<!DOCTYPE window>

<window xmlns="http://www.mozilla.org/keymaster/

gatekeeper/there.is.only.xul"

xmlns:html="http://www.w3.org/1999/xhtml"

title="Boxes in XUL">

<vbox flex="1">

<description id="header">This is the

header</description>

<description id="nav">Navigation</description>

<vbox flex="1">

<hbox flex="1">

<description id="sidebar"

flex="1">Sidebar</description>

<description id="main-content" flex="2">Main

content goes here...</description>

</hbox>

<description id="footer" height="100">This is

the footer</description>

</vbox>

</vbox>

</window>

To recreate exactly the XAML layout of figure 4 in XUL would suf-
fice to divide the main content in two horizontal boxes; the second
one, in turn, in two vertical boxes; and, finally, to alter their position.
This is a very intuitive process, when compared with CSS, as it will
be shown in the two following chapters.

Graphical Libraries of Programming
Languages

JaJavva Sa Swingwing

Swing is the library for building graphical user interfaces (GUI) in
Java. It is part of the Java Foundation Classes (JFC), which is the

User Interface Languages

67

graphical framework that implements all the GUI functionality in
Java, and also comprises AWT and Java 2D.

A Brief Historical Note Java was conceived as a multi-platform and multi-device pro-
gramming language. In 1991, the members of an small project at
Sun that would eventually lead to the Java programming language
that was announced to the world in 1995, had come to the conclu-
sion that “at least one significant trend would be the convergence of
digitally controlled consumer devices and computers” (Byous,
2003), and the predecessor of Java was in fact shown in 1992 in a
handheld home-entertainment device.

This short piece of history is relevant because the requirements
of the Java programming language were similar to those of the web
itself: multiple devices, operating system independent… Therefore,
among many other considerations, it was needed a manner to build
graphical user interfaces that did not depend on the underlying
window environment. Not controlling the specific features of the
device where the program would run also meant that the program-
mer should be able to create layouts that adapted to the dimensions
of the screen. Although the initial GUI library of Java was AWT, not
Swing, the aforementioned requirements are the same, and the part
regarding layout shares essentially the same design in both techno-
logies, so for the following review I will focus on Swing, which has
superseded AWT for other reasons that are not pertinent here.

Layout Managers A layout manager is an object that controls the size and position
of components inside a container. This concept in essential to meet
the platform and device independency: instead of hard-coding the
layout algorithm in the containers themselves, that knowledge is ex-
tracted to another object, in which the container delegates to ar-
range its children. Java designers have thence applied here the
Strategy design pattern (Gamma et al., 1995, pp. 315–330), which
makes the design flexible and allows interchange layout managers
for any container, or even implement our own layout manager, if
none of those provided by the Java API serve our needs. An over-
view of the design of components, containers, and layout managers
in Java Swing is provided in the class diagram of figure 6.

These are the layout managers provided by JFC:

Layout Languages

68

Figure 6. Class diagram of components, containers, and layout managers in Java Swing. In this flexible design the
knowledge of how lay out components is extracted from the container to a class apart, the layout manager, from
which the distinct layout policies inherit, thus making very easy to interchange them or even implement our own
layout manager. This constitute an example of use of the Strategy design pattern. In addition, containers and com-
ponents follow a Composite design pattern, which allows to add either single components or containers to any
container without any restriction in the nesting level.

• BorderLayout

• BoxLayout

• CardLayout

• FlowLayout

• GridBagLayout

• GridLayout

• GroupLayout

• SpringLayout

Graphical Libraries of Programming Languages

69

There exist, actually, other layout managers, as it can be seen in
the Java API documentation for the LayoutManager interface (Sun,
2008), where many other classes that implements this interface are
mentioned (ViewportLayout, ScrollPaneLayout, BasicCom-

boBoxUI.ComboBoxLayoutManager, BasicSplitPaneDivider.Di-

viderLayout, DefaultMenuLayout…), but they are very specialised
cases of layout managers that are used by the platform itself to per-
form the operations of some components, or by tool implementors.
They are not intended for a general use, as are the ones enumerated
above.

I will not go into many details here about them here. Some
of them are very similar to those that have already been described
for WPF/XAML or XUL. That is the case of BorderLayout, which
shares similarities with DockPanel control in Windows Presentation
Foundation (see p. 58), or BoxLayout and XUL boxes. It is worth to
mention, though, that in the case of the Swing component, BoxLay-
out, it can be combined with the interesting feature of fillers, invis-
ible boxes that allow to determine how the excess of space, if any,
is distributed among the children of the box. Fillers can be a ri-
gid area, a kind of elastic glue, or even a custom filler created by
the developer with whatever minimum, preferred, and maximum sizes
(Walrath, Campione, Huml & Zakhour, 2004, p. 3551).

GridBagLayout
There is one component, though, that deserves at least a brief men-
tion. It is the GridBagLayout. It is the more flexible of Swing layout
managers, which “ aligns components by placing them within a grid
of cells, allowing components to span more than one cell. The rows
in the grid can have different heights, and grid columns can have dif-
ferent widths” (Walrath, Campione, Huml & Zakhour, 20042).

1 Also available online at http://java.sun.com/docs/books/tutorial/uiswing/layout
/box.html#filler

2 http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#gridbag

Layout Languages

70

http://java.sun.com/docs/books/tutorial/uiswing/layout/box.html#filler
http://java.sun.com/docs/books/tutorial/uiswing/layout/box.html#filler
http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#gridbag

Discussion

Note that, although it might seem otherwise, I am not pretending
to compare XAML or XUL with CSS. At least, not as alternatives.
They have very different purposes: both XAML and XUL are user
interface languages. They are intended for building graphical user
interfaces, in which the content and the layout are a whole. Exactly
the same that should be done in the last XUL example to make it
looked like the previous one in XAML (adding boxes, altering their
order in the markup, etcetera) is the mayor criticism of this thesis to
the current way of specifying the layout in CSS. In the case of these
languages —and the same happens with Java Swing—, this is not a
problem, since they are not oriented towards the separation of presentation
and content. Although both of them (specially in the case of XUL)
allow to separate the style more than I have done in the examples
above, in both of them, too, content and layout are, by definition,
inextricably bound.

What is the point, then, in the comments that I have done dur-
ing their review, comparing them with CSS? Because creating lay-
outs with them is very easy, when compared with how the same lay-
outs could be done in CSS, using floats and positioning. It is like
drawing, where a box can be divided into two areas, which in turn
are subdivided again, and so on. It is like laying out with Microsoft
Word with tables. Or like it was done with HTML table-based lay-
outs. All of those methods have something in common: they are in-
tuitive. Unfortunately, not the same can be told of the referred layout
mechanisms provided by Cascading Style Sheets. In addition, even
some of the very simple layouts that have been shown in this sec-
tion, are not currently possible in CSS, because the notion of flexib-
ility can only be simulated with percentages, and they do not work
well when they are mixed with widths or heights expressed in other
length units.

The reason, in definitive, why they are being reviewed in this
thesis is because some of their features either are related or have
served as an inspiration, for the solution presented in this thesis for
CSS: the Template Layout Module.

Graphical Libraries of Programming Languages

71

CSS Box & Visual
Formatting Models
The aim of this chapter is to offer an introduction to
the current mechanisms that Cascading Style Sheets
offers for layout, namely, floats and absolute
positioning. It is a basic review of CSS box and visual
formatting models, as they are defined in the current
CSS 2.1 specification. Nevertheless, this thesis would
not be complete without this review for two reasons:
first, it is essential a good knowledge of these
mechanisms to understand the more advanced layout
techniques examined in the next chapter; secondly, as
this chapter will reveal, these basic mechanisms are
not so simple after all.

5

One Document, Two Representations

Both HTML and XHTML are markup languages to describe struc-
tured documents, a concept pioneered by the Standard Generalized
Markup Language (SGML), as it has been explained on Chapter 2.
While computer encodings of documents have long concentrated
on preserving the final form presentation (a nicely laid out paper
document), structured document formats take a different approach;
rather than preserving the final form presentation they encode the
logical structure of the document. Among the reasons for doing so
is the preservation of device independence, document searchability
and information re-use in general (Lie & Saarela, 1998).

If we focus on the structure itself, it is convenient to see the doc-
ument as a tree, where every element has exactly one parent, with
the exception of the root element, which has none. Thus, the fol-
lowing HTML document could have been represented as the tree
shown in the diagram of figure 1 (Lie & Bos, 2005, pp. 28–29).

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Bach’s home page</title>

</head>

<body>

<h1>Bach’s home page</h1>

<p>Johann Sebastian Bach was a

prolific composer. Among his works

are:</p>

the Goldberg Variations

the Brandenburg Concertos

the Christmas Oratorio

</body>

</html>

CSS Box & Visual Formatting Models

74

Figure 1. Diagram of ele-
ments within elements in a
tree structure

The box model defines how
user agents process the docu-
ment tree, generating zero or
more boxes for each element.

But this way of viewing documents, though it suits well the no-
tion of HTML pages as structured documents, is not very useful
when it comes to actually lay out the document and obtain a visual
representation of it. It is there that the box model comes into play,
which defines how user agents process the document tree, generating
zero or more boxes for each element. Thus, instead of representing the
document as a tree structure that resembles a genealogical tree
—which is very appropriate for focusing on the hierarchical rela-
tionships between elements—, now we can see it made up of boxes
that contain other boxes. This is what is shown in figure 2, which de-
picts the boxes that a user agent could have generated for the given
portion of a HTML document (Lie & Bos, 2005, p. 123).

One interesting thing to emphasise about the box model is that,
although in CSS it looks as if the style properties are added to ele-
ments, what happens in fact is that the browser creates a parallel
structure: for each element in the source, an object, called a format-
ting object gets all the properties (Lie & Bos, 2005, p. 124).

Visual Formatting Model Basis

As stated in the specification, when user agents process the docu-
ment, each element in the document tree generates zero or more
boxes according to the box model.

One Document, Two Representations

75

<p>Text of the first in

the list has a few

emphasized words in the

middle.</p>

Figure 2. Boxes containing
other boxes

According to the specification (Bos, Çelik, Hickson & Lie,
2009, §9.1), the layout of these boxes is governed by :

• box dimensions and type
• positioning scheme (normal flow, float, and absolute positioning)
• relationships between elements in the document tree
• external information (for instance, viewport size, intrinsic dimen-

sions of images, etcetera)

What the paragraph above means is that, whereas the box model
defines the dimensions of the boxes that are generated from the
elements in the document tree, the visual formatting model is at a
higher abstraction level and manages how those boxes are laid out
on visual media (computer screens, mobile devices, printed pages,
etcetera). This is the type of medium with which this thesis is con-
cerned, even though the proposed solution would also bring access-
ibility improvements to other types of media, like braille devices and
speech synthesisers.

In this introductory section about the visual formatting model I
will only focus on describing the basic types of boxes which exist in
CSS. Box dimensions will be described in the following section. And
positioning schemes, which are one of the most important topics of
this chapter, will be deferred until the box model and the properties
which manage box dimensions have been explained, when they will
be thoroughly studied.

CSS Box & Visual Formatting Models

76

http://www.w3.org/TR/CSS2/visuren.html#visual-model-intro

TTypes of Bypes of Booxxeses

The visual formatting model defines several types of boxes which
may be generated in CSS. The type of a box determines its beha-
viour, that is, how it is firstly rendered and how it is affected by
changes in the viewport dimensions or in the font size.

Block and Inline BoxesThese are the most common types of boxes and, as such, anyone
who is taking his first steps in CSS should be aware of the differences
between them. Why are them so important? Because they are al-
ways present in any HTML document, even in the absence of any
style sheet applied to the document. In fact, this distinction is also
present in the HTML specification (Raggett, Le Hors & Jacobs,
1999, §7.5.3):

Certain HTML elements that may appear in BODY are said to be
“block-level” while others are “inline” (also known as “text level”). The
distinction is founded on several notions: …

The first of such features why is needed to differentiate both types
of elements is the content model. With this term the specification
refers to the fact that the type of an element determines what other
elements can contain. Thus, inline level elements can only contain
text and other inline elements (note that this include images, since
img is an inline element), whereas many block elements, like div

or blockquote can also have other block elements inside (neverthe-
less, it is the HTML grammar, defined by its DTD which has the fi-
nal word on what concrete elements can be put inside a given one).

Although this distinction is very important from the point of
view of the markup, it is not that in which I am interested. Neither
is it the third one mentioned in the HTML specification: the direc-
tionality, which is related to how both types of elements inherit text
direction information, a question that is not dealt in this thesis.

What is really important for the topic of this thesis is the notion
of formatting:

By default, block-level elements are formatted differently than inline ele-
ments. Generally, block-level elements begin on new lines, inline elements

Visual Formatting Model Basis

77

http://www.w3.org/TR/html4/struct/global.html#h-7.5.3

Figure 3. Box model basis.
The box is actually made up of

the borders, the paddings
(that is, the separation

between the content and the
borders of the box), and the

content itself. Finally, the
margins are the space that a

box leaves with the surround-
ing boxes in the page.

do not. For information about white space, line breaks, and block
formatting, please consult the section on text.

Although the specification does not give much details of how both
types of elements are formatted, the common behaviour for block
elements, since the conception of the web and the first browsers,
is that the box generated by them is as width as its containing box,
while inline level elements are as narrow at it is possible to fit their
contents. This is much more detailed in the CSS specification, and
will be explained later in this chapter.

Other Types of Boxes Block and inline boxes are not, however, the only types of boxes
that exist in CSS. Thus, CSS 2.1 defines several values for its dis-

play property that can make that any element, regardless its type,
behaves as if it were a table, a table cell, a list, etcetera.

Box Model Basis

As it has been said, the box model defines how a set of rectangular
boxes —those which are going to be actually rendered by the user
agent— are generated for the elements in the document. Each box
is made up of the following four essential parts (from outermost to
innermost): margin, border, padding and content (see figure 3).

CSS Box & Visual Formatting Models

78

Margin
A margin is the space that the bounding box of an element leaves
with any other adjacent box on the page. We can think of a margin as
having the effect of pushing the element away from other elements
on the page (Olsson & O’Brien, 2008, p. 209). Margins are always
transparent and, although they belong to the box model, they are ac-
tually outside the box.

Border
The border is the outer edge of the box. CSS allows to specify not
only the width of the border, but also its colour and style (solid,
dashed, dotted, and so on).

Padding
While margins are used to specify the white space around boxes,
padding refers to the space inside the box. Or, more specifically, it
defines how much space to insert between the content of an ele-
ment and the outside limits of its bounding box. As such, it is often
used to create a gutter around content so that it does not appear too
close to the outside limits of the box (this is specially true when a
background or a border have been applied to the element).

Content
Finally, there is the content itself, which in the CSS box model is the
area occupied by the contents of the element for which the box is
being generated, either text or other children elements.

Other properties that also affect the box model are:

Width
By default, a block level element generates a box that expands until
it takes up all the available width (that is the width of its container
box, after subtracting the corresponding paddings, margins and bor-
ders), whereas the box for an inline level element is as narrow as
possible to display its content without any line break occurs (the
actual algorithm for width computation is, of course, rather more

Box Model Basis

79

complex). CSS permits to change both the type of box to create and
the width of the generated box.

Height
The default height is the height necessary for the content to fit in its
box. Of course, that value depends on both the style applied to the
content (type and size of font, line height, margins among children
elements, etcetera) and the given width of the box (the narrower a box
be, the taller should have be to fit its contents).

As for the width, height can also be explicitly set, but given the
nature of web publishing, this is rarely done currently in CSS, be-
cause it depends on several factors over which the designer has not
control, and therefore the content may overflow the box (see the
note about width and height on the web on below).

Background
Although background properties, unlike the preceding ones, does
not change the dimensions of the box, they are also closely related
to the box model and affect the visual perception of the generated
box.

By default, all elements have a transparent background, which
means that the background of the parent box is visible through. But
there are some CSS properties that specify either a background im-
age, a background colour, or both.

All the elements of the box model can be seen in 3D, in Hickdesign
(2004), of which also exists an interactive version due to Living-
stone (n.d.).

A HistA Historical Notorical Note about We about Width and Heighidth and Height on the Wt on the Webeb

Since the origins of the web, the default behaviour for rendering
HTML documents is that the browser automatically calculates the
dimensions of each box based on its contents. The raison d'être for
this behaviour is that one of the requirements of the HTML was,
says its inventor (Berners-Lee, 1999) “to get it display reasonably
on any of a very wide variety of different screens and sizes of pa-
pers”. Thus, elements in a HTML document with no style applied to

CSS Box & Visual Formatting Models

80

it are laid out according to their type and so that they fit their con-
tents.

Although CSS allows to set an explicit width and height for an
element (actually, for the box generated by that element), the lat-
ter is almost never used on the web for practical reasons, because it
is very difficult to determine what is the minimum height of an ele-
ment for its content not to overlap when either the dimensions of
the browser window or the font size change.

BBoox Dimensionsx Dimensions

Once the four distinguishable areas of the box model have been
defined, the concrete CSS properties that allow to alter box dimen-
sions and appearance will be described in the following subsections.

MarginsMargins can be set by means of the margin-top, margin-right,
margin-bottom and margin-left properties, or with the shorthand
property margin, which allows us to define all the four margin values
at once. Margin properties take as a value a CSS length (pixels,
points, em1, centimetres and so on), the keyword auto or a percent-
age of the width of the containing block of the element (if the width
of the containing block depends on the element to which percent-
age margins are applied, the result is undefined in CSS 2.1 Bos, Çe-
lik, Hickson & Lie, 2009, §8.3). These values are enumerated and
briefly defined below:

Length
Either an absolute or relative value.

Percentage
A percentage of the width of the block level element that contains
this element. This is true even for the top and bottom margins (a
percentage still refers to the width of the containing block, not to its
height, as it could be thought).

1 An em is a unit of measurement in the field of typography, equal to the point size
of the current font (Wikipedia, s.v. “em”, http://en.wikipedia.org/wiki/Em_(ty-
pography)).

Box Model Basis

81

http://www.w3.org/TR/CSS2/box.html#margin-properties
http://en.wikipedia.org/wiki/Em_(typography)
http://en.wikipedia.org/wiki/Em_(typography)

auto

The browser will calculate the margins automatically. It is not evid-
ent, though, what this means, because it depends on the type of the
box generated by the element (whether it is inline, block, inline-
block, etcetera), its positioning scheme (normal flow, float, or absolute
positioning), its width, and the value of the opposite margin. There
are too many combinations (Bos, Çelik, Hickson & Lie, 2009,
§10.3) as to be reviewed here, but, just as an example of how
counter-intuitive it might be, this is the common way of centering
block elements in CSS:

#menu {

margin-left: auto;

margin-right: auto;

}

Shorthand Property
In addition to the four individual margin properties (one per each
side of the margin area) margins can also be defined with the afore-
mentioned shorthand property margin. This becomes a handy tool
when we want to apply the same margin to all the four sides of the
element, what can be done with just one declaration, like for ex-
ample: margin: 2em. But this shortcut can also be used to specify
different values for the four margins. In that case, the values are sup-
posed to be defined clockwise starting from the top. Thus, the fol-
lowing declaration would set a top margin equal to the font size of
the element, a right margin of ten per cent the width of the contain-
er, a bottom margin of two times the font size of the element and a
left margin of 210 pixels:

margin: 1em 10% 2em 210px;

If less than four values are specified, the missing ones are assigned
the same value as their opposite side. So for example a margin: 1em

2em 3em; would be equivalent to:

margin-top: 1em;

margin-right: 2em;

CSS Box & Visual Formatting Models

82

http://www.w3.org/TR/CSS2/visudet.html#Computing_widths_and_margins

margin-bottom: 3em;

margin-left: 2em; /* same as margin-right */

Analogous shorthand properties exists for paddings and borders,
and they behave the same.

Default Value
The default value for the property margin is 0. In practice, though,
it is quite common that some elements have an actual value defined
by the browser default style sheet. Thus, block level elements usually
have some length value applied to their top and bottom margins
(that is the reason why in a HTML document with no user style
sheet applied to it paragraphs, headings and so on are rendered
leaving some vertical space among then). These browser default
styles sometimes conflicts with user’s intentions, so some authors
recommend to override most of such styles to have the style sheet
under control from the beginning. It is what has been known reset
stylesheets, which are described later in this chapter.

Negative Margins
As it has been said, margins allow negative values. Although the spe-
cification does not define which is their behaviour (at least, not ex-
plicitly), they have the effect of increasing the width of the element
to which they are applied. To understand their meaning, consider
the following example, inspired on that of Meyer (2007a, pp.
166–167):

div { width: 400px; padding: 1.5em 0.5em; }

p.wide { margin-left: 10px; margin-right: -50px; }

PaddingsPaddings can be defined with the padding-top, padding-right,
padding-bottom, and padding-left properties. There exists a pad-

ding shorthand property, too, which behaves like that described for
margins, so it will not be detailed here again. All these five proper-
ties accept the following values:

• length
• percentage

Box Model Basis

83

This is thewide paragraph.

Another paragraph.

Figure 4. The first paragraph
has a left margin of 10 pixels

and a margin right of -50
pixels. Note how as a conse-
quence of the negative mar-
gin, this paragraph sees how

its effective width is in-
creased. In other words, ap-
plying a negative margin to

one of the sides of an element
is like we pull it from that

side, stretching it. Their meaning is exactly the same than those for margins, with the
only difference that negative values are not allowed for padding.

Borders Although CSS allows to change the colour, style (solid, dotted,
dashed, etcetera), and width of each of the four borders of an ele-
ment, I will only mention border widths here, since the other prop-
erties only affect the appearance of the border, and not the layout
(only the width of a border alter the dimensions of the box, as it will
be explained soon).

The property that changes the width of a border are border-

top-width, border-right-width, border-bottom-width, and
border-left-width. As always, a shorthand border-width is avail-
able and lets set the width of the four border sides at a single place.

Width Finally, once that margins, paddings, and borders have been
defined, and their corresponding properties briefly explained, we
are able to introduce the width property itself. It can take any of the
following values:

Length
Any CSS length unit (pixels, em, cm…).

Percentage
If the width of the element is assigned a percentage value, it has
the same meaning than for margins, paddings, and borders: “the
percentage is calculated with respect to the width of the generated
box’s containing block. If the containing block’s width depends on
this element’s width, then the resulting layout is undefined in CSS
2.1.” (Bos, Çelik, Hickson & Lie, 2009, §10.2).

CSS Box & Visual Formatting Models

84

http://www.w3.org/TR/CSS2/visudet.html#the-width-property

But, as usually, things are more complicated in CSS that it seems at
first sight. Thus, the width property does not set the width of the box
itself, but the width of the content area. This can be better understood
recalling the figure 3, where the four fundamental elements of the
box model (margins, borders, paddings, and content) were depicted.
In other words, the width property does not set the width of the vis-
ible box compound of border, padding, and content, but only the
width of the content. The following formula (Bos, Çelik, Hickson &
Lie, 2009, §10.3.3) shows how the width of the box is computed for
a “normal” element (a block-level element that is neither floated nor
absolute positioned):

margin-left + border-left-width + padding-left + width +
padding-right-width + border-right-width = width of the
containing block

Or, which is the same thing:

value of width property = available width - paddings - borders

In order to see how all this elements interact in practice, let’s
consider the following HTML code:

<html>

<body>

<h1>The box model</h1>

<div>

<p>This is a paragraph inside a

<code>div</code>, which contains text and some

inline elements.</p>

</div>

</body>

</html>

Now I will apply some style to it, focusing on the properties that
most directly deal with the box model. For the moment, I will con-
centrate just in the div block to study the basis of the box model and
see how the properties that have been reviewed so far in the chapter
affect the dimensions of the generated box (later in this chapter I

Box Model Basis

85

http://www.w3.org/TR/CSS2/visudet.html#blockwidth

will have the opportunity to go into deeper details and describe how
they interact among them). The applied style is:

body { margin: 2em 4em; }

h1 { margin: 0; }

div {

width: 420px;

margin: 20px 0;

padding: 0.6em 10px 160px 30px;

border: 5px solid rgb(0, 137, 255);

background: rgb(203, 255, 250) url(wave.png) 35px

bottom no-repeat;

font-size: 1.2em;

line-height: 1.5;

}

First, a width have been explicitly set for the div element. If it had
been left unspecified, since div is a block element, it would have ex-
panded to occupy all the available width; instead, I have assigned to
it an explicit width of 420 pixels to see how that property, width, ac-
tually works in the box model context.

Secondly, explicit values for margins, paddings and borders are
also specified: a value of 20 pixels is set for the four margins; differ-
ent padding values are also applied to the four sides; and a border
of 5 pixels enclosed the whole box. Having all of that into consider-
ation, the width of the box will be 470 pixels:

box’s width = 420px (width) + 30px (padding-left) + 10px
(padding-right) + 10px (left and right borders) = 470px

This can be check by means of the Firebug inspector (“Firebug”,
2010), a Firefox extension that allows, among other things (for in-
stance, it is also a JavaScript debugger), to inspect the computed
CSS for each element, and even provides a kind of “preview” of the
boxes generated for the selected element, with its dimensions, in
pixels. Thus, the dimensions of the box generated for the div block
of the example above are shown in figure 5.

CSS Box & Visual Formatting Models

86

Figure 5. Firebug.

Collapsing Margins

I have postponed the discussion of this issue, instead of mentioning
it when margin properties where discussed, because I consider that
it is complex enough, and a not so well-known feature of margins,
as to deserve its own section. The expression collapsing margins (Bos,
Çelik, Hickson & Lie, 2009, §8.3.1) “means that adjoining margins
(no non-empty content, padding or border areas or clearance sep-
arate them) of two or more boxes (which may be next to one anoth-
er or nested) combine to form a single margin”. This only applies to
vertical margins; horizontal margins never collapse.

What are the circumstances under which vertical margins col-
lapse? As always, it is not easy to explain, since there are many rules
that determine when the margins of an element may collapse with
those of its children or surrounding boxes. First, I will define how
two margins are combined to form a single margin: if two or more ver-
tical margins collapse into a single one, the resulting margin is maximum of
the adjoining margins.

As for the needed conditions for two margins to collapse, sum-
marising what the specification says at this respect, for only the most
general case, the adjoining margins of block boxes in the normal flow
(that is, not floated nor absolute positioned) collapse.

Box Model Basis

87

http://www.w3.org/TR/CSS2/box.html#collapsing-margins

There still is another aspect to define: what the term adjoining
means: two margins are said to be adjoining if the bottom edge of the
bottom margin of the top box and the top edge of the top margin of the bot-
tom element are actually in contact. For practical purposes, this has two
consequences for determining when two margins collapse:

• Whatever adjacent vertical margins collapse, it does not matter
whether their boxes are sibling or nested. That is, margin collapsing
does not only happen when one block level element follows anoth-
er, as many people can think (Budd, 2003), but “whenever one mar-
gin comes into contact with an adjacent margin. This means that
margins can also collapse when one element is contained within an-
other.”

• If there is a border between two margins, they are no longer adja-
cent, and therefore they do not collapse.

I will try to summarise all the above in an example. Let be the fol-
lowing HTML document:

<body>

<h1>Collapsing Margins</h1>

<p>This is the first paragraph.</p>

<p>Another paragraph.</p>

<div>

<p>This paragraph is enclosed in a div.</p>

</div>

<div class="border">

<p>This paragraph is enclosed in a div that has a

border.</p>

</div>

</body>

Now I am going to apply some margins to the paragraphs and divs:

p {

margin: 20px 0;

padding: 10px;

}

CSS Box & Visual Formatting Models

88

div {

margin: 25px 0;

padding: 0 1em;

}

div p {

margin-top: 30px;

}

div.border {

border: 3px solid white;

}

The result is shown in figure 6. Accordant to what has been de-
scribed about the collapsing of margins, this is what is happening:

• Both first and second paragraphs have their top and bottom margins
set to 20 pixels. Since they are adjacent, instead of adding the bot-
tom margin of the first paragraph plus the top margin of the second
one, both margins collapse. Both are the same value, so the resultant
margin has a value of 20 pixels.

• The third paragraph is enclosed in a div. The style sheet has defined
a top and bottom margins of 25 pixels for div elements. In addition,
the paragraphs inside a div are set a top margin of 30 pixels (the bot-
tom one is left unassigned, so it inherits the 20 pixel value from the
“normal” paragraphs).

Now we have three involved margins: the top margins of the div
block and the third paragraph, and the bottom margin of the second
paragraph: 25, 30, and 20 pixels, respectively. Since the three mar-
gins are adjacent, all of them are collapsed, and the result is a margin
of 30 pixels. Note that, as has been stated before, there is not matter
whether one element is a child of another, or if both are sibling ele-
ments: all that counts for margin collapsing is whether they are or
not adjacent. This is not usually as intuitive as for the first case.

• Finally, there are the third and four paragraphs, and their containing
divs. In this case there are, therefore, four margins that might be col-
lapsed: bottom margins of the third paragraph and its parent div,

Collapsing Margins

89

Figure 6. Collapsing margins.

and top margins of the four paragraph and its parent div: 20, 25, 30,
and 25 pixels, respectively.

But now another factor comes into play: the div that contains
the four paragraph has a border. As stated above, that breaks the ad-
jacency of margins. Thus, the margin top of the four paragraph does
not collapse with the others. Instead, it leaves that space (30 pixels)
between the paragraph and the top border of its parent. As for the
other three margins, the maximum value is 25 pixels: that is the res-
ultant margin after they have collapsed.

CSS Box & Visual Formatting Models

90

Whilst, once learned the theory, it is not difficult to remember, col-
lapsing margins frequently confuse the author. Although in an ex-
ample like the above, specifically created for illustrating their beha-
viour, they may even seem, to some extent, simple, sometimes, when
“debugging” a complex style sheet applied to a real web page, it may
be difficult to realise that some unexpected space between two ele-
ments is due to this phenomenon. As Meyer (Meyer, 2004a) has
stated:

Like many basic concepts, margin collapsing can lead to unexpected and
sometimes counterintuitive results.

This is specially true when that unwanted space is due to some nes-
ted element. Thus, one of the recurrent “Why is this happening?” ques-
tions that I am asked in my CSS courses, is, for example, when a stu-
dent wants a header not to leave space with the edges of the page.
They usually have a code similar to this:

<body>

<div id="header">

<h1>Lorem Ipsum</h1>

<p id="tagline">...</p>

...

</div>

...

</body>

And the CSS code that they are trying to apply is something like
this:

body {

margin: 0;

padding: 0;

}

#header { margin: 0; }

Certainly, the above would suffice… if it were not for the margins
of the h1 element. The problem is that, most times, as in the above
style sheet, they have not assigned any margin to it. Nevertheless,

Collapsing Margins

91

Figure 7. The combination of
collapsing margins, nested
elements, and browser de-

fault styles may lead to unex-
pected results.

the header is still leaving some whitespace with the top of the body,
as shown in figure 7.

What is creating that separation, then? In this case, it is due to
the default styles that every browser has defined, and which is the
cause why, if we open an HTML with no styles applied to it, we are
able to see it with a certain visual structure: headings are bigger and
bold, lists are formatted as lists, paragraphs are separated each other,
etcetera. In the example above, the default margins for h1 elements
is causing the vertical separation between the header and the top of
the page. There would have been needed to explicitly remove it with
a rule like:

h1 { margin: 0; }

That is one of the reasons why some authors like to reset such default
styles, which is known as reset stylesheets. This concept is explained in
the sidebar of next page.

Floats

According to the CSS 2.1 specification, by floating an element we
are shifting it to the left or right on the current line and allowing that
the content flows along its side (Bos, Çelik, Hickson & Lie, 2009,
§9.5). What does it actually mean? As the specification suggests, a

CSS Box & Visual Formatting Models

92

http://www.w3.org/TR/CSS21/visuren.html#floats

Reset DReset Default Stefault Stylesyles

The core idea behind CSS is, as it has been re-
peatedly mentioned in this thesis, the separation
between content and presentation. The content and
structure of the document is represented by the
markup, whereas all the stylistic information is en-
trusted to style sheets. Nevertheless, even an
HTML document with no style information is not
displayed by the browser as if it were a plain text
document, but some kind of format is applied to
it. Thus, headlines are usually rendered in a larger
font size and bold, links are typically underlined and
blue, lists are displayed indented and either
numbered or with some type of bullet before each
list item and so forth. This is because, in addition
to style sheets coming from authors and readers,
CSS acknowledges a third source of stylistic inform-
ation, namely the browser. Thus, a browser which
supports CSS has a default style sheet that is com-
bined with style sheets coming from the author or
reader. Even non CSS compliant browsers, includ-
ing text browsers, have some hardcoded stylist in-
formation.

Although this is intended to be a help for au-
thors, who can then focus just on describing the
differences between the conventional presentation
(that of the default style sheet) and their preferen-
ces, the truth is that it often represents a problem
for some users, who sometimes see how the browser
is not displaying their web page as it was intended

to be. This is specially true in the case of collapsing
margins, which have been previously discussed.

In its most basic form, a reset style sheet could
be similar to the following:

* {

margin: 0;

padding: 0;

}

In practice, however, authors usually employ a more
complex version of it (Çelik, 2004; Yahoo!, 2009;
Meyer, 2008a, 2008b, 2007c), where not only mar-
gins and paddings are removed, but other styles,
such as those of lists, line height, font size, etcetera,
are also reset to some predictable value, chosen by
the author (instead of taking for granted some hid-
den styles chosen by the browser). This is the main
reason cited by Meyer (2007b) why he uses a reset
style sheet, namely, to normalise styles among
browser implementations:

The basic reason is that all browsers have presenta-
tion defaults, but no browsers have the same defaults.
… Not only do I want to strip off the padding and
margins, but I also want all elements to have a con-
sistent font size, weight, style, and family. Yes, I want
to remove the boldfacing from headings and strong

elements; I want to un-italicize em and cite elements.

float (also called floated or floating box, although the short name is
the most widely used in practice) has two effects:

• It moves the floated element to the left or right
• The surrounding content can flow around it

Floats

93

Figure 8. A non wrapping im-
age in Microsoft Word.

By default, inline elements in the normal flow of the document are
placed in order, in the same line, one line after another. This is the
same behaviour that most desktop word processors exhibits. Figure
8 shows how one of the most popular of such products, Microsoft
Word —specifically, its 2008 version for Mac— displays an image
that has been inserted in the middle of a paragraph. The same in
HTML could have been achieved with the next markup:

<h1>Lorem ipsum</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Duis felis orci, egestas ac fringilla sit amet,

pretium eget lacus. Nam aliquam sem a nunc varius ut

tempus ligula imperdiet. Aenean <img src="figures/

lanita.jpg" src="My cat Lana"/> in lorem justo. Cras

interdum ante vel ante adipiscing auctor. Aliquam

interdum vestibulum turpis. Aenean consequat fermentum

orci, a tempus quam eleifend ut. Phasellus ante

tortor, ultricies at adipiscing in, egestas sed

lectus. Nulla ac tortor at nibh varius ullamcorper.

CSS Box & Visual Formatting Models

94

Figure 9. Image wrapping in
Microsoft® Word

Vestibulum iaculis mauris eget enim bibendum sit amet

imperdiet quam fringilla. Cras est quam, fringilla in

eleifend eu, viverra id nisl.</p>

This is not usually what the author wants. What we are used to see
in printed media is the text flowing around the images, either on its
left, its right or both sides. Again, every word processor allows to do
such things, with greater or lesser level of complexity. This can be
done in the same word processor of the example above just going
to the Formatting Palette and then, under Wrapping options, selecting
a style other than In line with text (for example, Tight). The result is
shown in figure 9.

As we can see, the surrounding text is flowing along both sides
of the image. Whereas this is not currently possible in CSS, we do
can make the text to flow along either the left or the right side of the
image, applying the corresponding value to the property float. For
example, the next code will produce the result shown in figure 10.

Floats

95

Figure 10. An image floated
to the left

img {

float: left;

}

Floats were never intended as
a layout mechanism, but as a

way to let the text flow
around the side of a piece of
content (usually, an image).

That is for what floats are. This is the main scenario that people who
made the first CSS specification had in mind when they included
this property in CSS 1 (Lie & Bos , 1996). It is not restricted to im-
ages, though, but it can be applied to any element (even an inline
one, in which case a block box will be generated for it).

Soon, designers started to find other uses of the float property.
In the beginning, it was no more than subtle variations of the same
example described above.

Another common scenario, similar to that of wrapping images
that has been shown above, is to float a navigation menu to the left
or the right of the page, as for example in figure 11 (a very simple
layout that is probably a bit outdated now but was very common a
few years ago).

CSS Box & Visual Formatting Models

96

Figure 11. A floating menu

OOther Uther Uses of Fses of Floaloatsts

Other possible uses of floats include:
Anchoring TextIn addition to move the floating element to the left or the right

edge of the container, the use use of float has another side effect
which is useful to get certain effects: although the floated element is
taken out from the normal flow of the document, it remains relative
to the point where the element is present in the document source
code, so that it will flow with the text, a feature that can be used to
create, for instance, side notes, like those which are found in many
books, including this dissertation.

This type of side notes, hanging punctuation, etcetera, can be
achieved in CSS using a combination of floats and negative margins:

.sidenote {

float: left;

margin-left: -12em;

}

Floats

97

Drop Caps A drop cap (also called versal or lettrine) is a method of marking the
start of the text, inherited from ancient scribal practice, which con-
sists on using a large initial capital which expands several lines of
text (Bringhurst, 2005). This practice can be recreated in web docu-
ments using a combination of float property and image replace-
ment, as it can be seen in the example by Weychert (2007) that is
shown in figure 13.

The example of drop cap shown in figure 13 can be done with
the next CSS code:

.drop {

width: 83px;

height: 83px;

display: block;

float: left;

text-indent: -9999px;

margin: 0 .1em .1em 0;

background: url(o.gif) no-repeat top left;

}

While in the example the author is using an image replacement tech-
nique, a drop cap can also be simulated just by enlarging the font
size of normal text, as follows, although the result will not be as ap-
pealing as the previous one

.drop {

float: left;

font-size: 6em;

line-height: .75em;

margin: 0 .1em .1em 0;

}

FFloaloat Issuest Issues

Even though for these simple use cases it works fairly well, all mod-
ern browsers implement it consistently and it is reasonably well un-
derstood by users, there are some issues or special features that well
worth to mention.

CSS Box & Visual Formatting Models

98

Figure 12. An example of
drop cap extracted from the
book Letters & Lettering: A
Treatise With 200 Examples
(Brown, 1921)

Figure 13. An example of
drop cap using CSS by Rob
Weychert, in the chapter
Bridging the type divide:
Classic typography with CSS
from the book Web standards
creativity (Weychert, 2007).

Floats

99

Figure 14. A floated element
may overflow its containing

block.

A Floated Element Is
Taken Out of the Normal
Flow

When an element is floated, the box that it generates is no
longer in the normal flow of the page. However, this is not the same
case than for absolute positioned elements. Whereas an absolute
positioned element is totally removed from the normal flow, and the
browser acts as if such element (its generated box) did not even ex-
ist, floats could be said that are in an intermediate position: in Mey-
er’s words (2007a, p. 284), “floated elements exist almost on their
own plane, yet they still have influence over the rest of the docu-
ment”.

In effect, we have seen in the examples of this chapter how the
browser actually takes care of floated elements, so that the rest of
elements in the document do not overlap, but know how to be
placed around the float.

However, they are not “normal” elements, either. Specifically,
floated elements are not taken into consideration for computing the height of
their containing block (Bos, Çelik, Hickson & Lie, 2009, §10.6.3):

Only children in the normal flow are taken into account (i.e., floating
boxes and absolutely positioned boxes are ignored, and relatively posi-
tioned boxes are considered without their offset).

This may led to the situation depicted in figure 14, where the floated
image overflows its containing div.

As strange as this behaviour might seem, it is not an error of
design in CSS, but an essential feature to be able to float images in

CSS Box & Visual Formatting Models

100

http://www.w3.org/TR/CSS2/visudet.html#normal-block

a document, as Meyer (2003b) has explained. But, as Meyer said in
the cited article, “while this is necessary for normal text flow, it’s a
major problem when floats are used for layout purposes”.

Clearing Floats
Nevertheless, this issue is not difficult to solve. There are three
methods for clearing the floats when it is needed that their contain-
ing block actually encloses them. The best method will depend, as al-
ways, on the actual markup of each concrete situation.

Clear Property. The first solution is the obvious one, and which
should be applied whenever possible: if the floated element is fol-
lowed by another one, then it is possible to “clear” it, using the
counterpart of the float property: clear, which prevents an ele-
ment to flow around the preceding floated elements, placing it in
the first line available below then. For instance, to to ensure that h3
elements are not placed to the right of left-floating elements, the fol-
lowing rule could have been declared:

h3 { clear: left; }

This property, intended to avoid that floated images hang down into
the next section, as in the example above, can also be used to solve
the issue of the containing block: if an element with a clear prop-
erty applied to it is in the normal flow of the document, then the
containing block will actually be as tall as to contain it and, there-
fore, the floated element above it.

The problem is when there is no such element to be cleared.
One solution would be introduce it artificially in the document.
Thus, in the example of figure 14, a new element could have added
just before the closing <div> tag:

<div class="box">

<h2>Lombard Street</h2>

<p><img src="lombardstreet.png" alt="Lombard

Street"/> Lombard Street begins at ... </p>

<p class="clear"></p>

</div>

Floats

101

And then cleared with a rule like .clear { clear: left; }, or
clear: both; to be used as a general class for clearing elements, re-
gardless of their position on one side or another.

Of course, this can only be considered a workaround, because
by doing so we are introducing presentational markup, thus break-
ing the separation between presentation and content.

Floating the Container. A second alternative take advantage of an
exception to the stated above, regarding the computation of the
height of a containing block. While it is true that floated elements,
like absolute positioned ones, are not taken into account for the cal-
culation of such height, the specification makes a few exceptions
(which, interestingly, are contained in a section titled Complicated
cases). One of such exceptions is when the containing block is also floated.
For those cases, the specification states the following for how auto

heights are computed (Bos, Çelik, Hickson & Lie, 2009, §10.6.7):

… In addition, if the element has any floating descendants whose bot-
tom margin edge is below the bottom, then the height is increased to in-
clude those edges. Only floats that are children of the element itself or of
descendants in the normal flow are taken into account, e.g., floats inside
absolutely positioned descendants or other floats are not.

What does the statement above mean, in plain words? That if the
containing block is floated, then it will be as height as needed to en-
close all their floated children.

Therefore, in our example, it would be enough to add the fol-
lowing rule:

.box {

float: left;

}

Despite its simplicity, this alternative have some drawbacks: it adds
more complexity to the layout, introducing a float that, otherwise,
would not have been needed. While this has not necessarily to be
a problem (assuming that browser vendors implemented CSS 2.1
perfectly), it might sometimes interfere with other floated elements
in a complex layout. In addition, by making the container floated,

CSS Box & Visual Formatting Models

102

http://www.w3.org/TR/CSS2/visudet.html#root-height

we have only moved the problem a step upwards: now, it is possible
that the container of the container only have floated elements, and
therefore it would have to be “cleared”, and so on.

Using the Overflow Property. According to Koch (2005), the third
alternative for “autoclearing” floats here presented was first written
by Walker (2005), who in turn give the credits for its invention to
O’Brien (n.d.). The method consists on defining the following two
declarations for the containing block:

.box {

overflow: auto;

width: 100%;

}

However, this technique is probably the most problematic of all
the reviewed ones. Specifically, as Knoch (2005) acknowledges, it
might cause unwanted scrollbars under certain circumstances. Al-
though the method also works specifying hidden as the overflow

value, it is even worse, because in such case the content would may
be hidden.
Nevertheless, Clarke (2007a, p. 307), talking about the ways of
clearing floats without added markup, has said: “one of the simplest,
and my current preferred solution, is to use the overflow property”.

Generated Content. The last method for clearing floats is based on
the generating content mechanisms provided by CSS (Bos, Çelik,
Hickson & Lie, 2009, Chapter 12). It is based on the first reviewed
method but, instead of inserting a presentational element into the
markup, it is generated from CSS. The solution is as follows:

.box {

content: '.';

display: block;

clear: both;

visibility: hidden;

height: 0;

}

Floats

103

http://www.w3.org/TR/CSS2/generate.html

What Flows Is the
Content, Not the Box
Itself

Other float issue, specially when it is being used for layout purposes,
is what I have tried to summarise in the title of this subsection: is the
content that flows, instead of the box itself. Or, more precisely —although
probably less understandable too— (Bos, Çelik, Hickson & Lie,
2009, §9.5):

Since a float is not in the flow, non-positioned block boxes created before
and after the float box flow vertically as if the float didn’t exist.
However, line boxes created next to the float are shortened to make
room for the margin box of the float. If a shortened line box is too small
to contain any further content, then it is shifted downward until either it
fits or there are no more floats present.

What the paragraph above means is that are not the block boxes
themselves, but the lines inside them, which flow down along the
opposite side to that where the floated element is positioned. This
can be easily illustrated setting a background colour or a border to
the element next to the float. In this case, that background colour
will be shown under the floated element (as long as we left the back-
ground colour of the floated element as transparent). This is a not
so well-known feature of floats, as I have been able to verify in the
CSS courses that I teach, and can sometimes be an issue when floats
are used for layout.

CSS Box & Visual Formatting Models

104

http://www.w3.org/TR/CSS21/visuren.html#floats

CSS Layout
Techniques
Whereas last chapter has described the basic layout
mechanisms provided by CSS , this one reviews the
state of the art of how such mechanisms are being by
web designers, in an attempt to overcome their
limitations.

The chapter begins defining the different types of
layout on the web, their advantages and
inconveniences. Then, some advanced techniques, like
creating several columns in any order or how to
simulate equal-height columns are discussed.

6

Introduction

Whereas the hypothesis of this thesis is —expressed in a very suc-
cinctly manner— that CSS suffers from a lack of true layout capabil-
ities, the truth is that it seems to be an easily arguable sentence when
one looks at the designs which can be seen on the web nowadays.
Headers, footers, two and three columns layouts, etcetera, are
things that are found in almost every current web site. Does it mean
that the hypothesis is false? No, it does not. While almost any ima-
ginable design can be achieved using just standard (X)HTML and
CSS, it is also true that many times they are carried out pushing
CSS beyond its limits, using properties in a manner for which they
were not conceived, or resorting to tricks that recall those used in
the early stages of the web.

Types of Layouts

This introductory section defines the different types of layouts that
can be currently found on the web.

As it has already been mentioned in this thesis (see p. 24 on
Chapter 2), one of the major differences between the web and other
media is the lack of control that web designers have over the dimen-
sions of the user’s browser window or the font size being used, con-
trasting with traditional printed-media design. Although they are
not the only factors that may vary (installed fonts is, for example,
another common issue in web design), both resolution and font size
are the two variables that exercise the most influence over the lay-
out.

This section reviews the different type of layouts based on how
they adapt to changes in either the resolution of the browser win-
dow or the font size, analysing their historical trends on web design
and stressing the advantages and drawbacks of each technique.

CSS Layout Techniques

106

FFixixed Laed Layyoutsouts

Fixed layouts are so called because the designer sets the width of
the overall layout of the page to a certain value in pixels. Their main
characteristic is that the width never changes, regardless the user’s
screen resolution, the dimensions of the browser window1, or if he
increases or reduces the font size through the preferences of his
browser. That is the reason why they are also known as rigid layouts.

They have been considered wrong for a long time, because of
their inability to adapt to the specific user’s environment, which has
been traditionally seen as an accessibility issue (Allsopp, 2000):

Browser windows can be resized, thereby changing the page size. Differ-
ent web devices (web TV, high resolution monitors, PDAs) have differ-
ent minimum and maximum window sizes. As with fixed font sizes,
fixed page layout can lead to accessibility problems on the web.

In a more recent article, Nielsen (2006a) also advocates for using li-
quid layouts:

Use a liquid layout that stretches to the current user’s window size
(that is, avoid frozen layouts that are always the same size).

(Even thought then he nuances the sentence above saying that the
design should be optimised for 1024 × 768, but using a liquid layout that
stretches well for any resolution, from 800 × 600 to 1280 × 10242.)

Nevertheless, in the last years, some authors have rebelled
against this belief. Thus, it was the subject of many debates
(Whitespace, 2003 ; Mullenweg, 2003; Marcotte, 2003; Keith,

1 Note that browser window size is not the same as screen resolution: not all users
browse the web with their browser window maximised (although it is true that so
do a majority). According to Baekdal (2006), 20 percent of the users with 1024 ×
768 resolutions does not maximise their browser window, so to support 95 percent
of the users, authors must design for a maximum size of 776 × 424 pixels, despite he
found in the same report that only five per cent of the users had 800 × 600 screens.

2 Of course, concrete resolutions will vary over time, depending of users’ screen sizes
and browsing habits, but the essential idea of Nielsen’s article is that the design
must be optimised for the commonest resolution yet supporting other typical res-
olutions, both larger and smaller, and this can only be done by using liquid layouts
instead of fixed ones.

Types of Layouts

107

2003; Rutter, 2003) in the web standards community when two
renowned designers such as Douglas Bowman and Dan Cederholm
coincidently (and, according to them, coincidentally) changed their
personal sites, Stopdesign1 and SimpleBits2, respectively, from a liquid
layout to a fixed-width design, on December 2003.

Bowman (2003) explains that such switching was primarily due
to two reasons:

The difficulties for controlling the length of lines
A basic typographic rule sets that more than 75 or 80 characters
per line of text becomes difficult to read, being the 66-character
line (counting both letters and spaces) widely regarded as ideal
(Bringhurst, 2005, p. 26). Fluid layouts that expand all the available
width may go far beyond that limit in large screens, thus affecting
the legibility of the page.

Images and other fixed-width objects
It is difficult to insert a fixed-width object, such as an image or a
video, when the width of the container is not known (as in a liquid
column) while preventing content overlapping and preserving the
layout.

Whereas the line-length issue could have been solved (leaving aside
the lack of support in some browsers) with the max-width property,
setting a value in em, the issue with replaced elements (those that
have their dimensions defined by an external source, such as im-
ages) and fluid layouts is still a problem nowadays (notwithstanding
some modern techniques that have appeared to deal with it, which
are discussed later in this chapter).

Another example of fixed layout can be found on A List Apart3.
When this acclaimed online magazine devoted to evangelise about
web standards was redesigned in 2005, their authors not only de-
cided to use a fixed layout, but they also optimised it for a width of

1 http://stopdesign.com/
2 http://simplebits.com/
3 http://www.alistapart.com/

CSS Layout Techniques

108

http://stopdesign.com/
http://simplebits.com/
http://www.alistapart.com/
http://stopdesign.com/
http://simplebits.com/
http://www.alistapart.com/

Figure 1. An example of fixed
layout, A List Apart. When
this online magazine about
web standards was rede-
signed on August 2005, their
creators not only adopted a
fixed layout —against the
common trend then on web
standards community of fluid
layouts—, but they did it for a
resolution of 1024 × 768
pixels, when almost every-
body were designing for 800
× 600.

Figure 2. When viewed with a
browser window size of 800 ×
600 pixels, the layout of A
List Apart does not change,
but remains at a width of
1024 pixels, so that horizont-
al scrolling is needed to see
all the contents of the page.

Types of Layouts

109

http://alistapart.com/
http://alistapart.com/
http://alistapart.com/

1024 pixels (when most fixed designs were made for the more con-
servative resolution of 800 × 600 pixels). The result of such redesign
is shown in figure 1. When it is seen at a 800 × 600 resolution some
of the contents of the page are no longer visible, and a horizontal
scroll bar appears at the bottom of the window (figure 2).

Being asked about this question, Santa Maria (2005), one of the
renowded designers in charge for such redesign, said:

ALA [A List Apart] has always tried to be one of those sites at the front
of the pack. We don’t support 800 × 600 anymore, nor do we 640 ×
480. Do you? People flipped when sites stopped supporting 640 ×
480… now no one says a word. Things change. Trust me, you are going
to see more sites stretching out their legs and putting their feet up.

What resolution? A fundamental question to be considered when designing a fixed
layout is to decide the resolution for which it will be optimised. Un-
fortunately, it is not easy to know a priori what it should be, because,
despite there are some studies about screen resolutions, as it has
been aforementioned in this chapter, screen resolution is not the same as
browser-window size (see footnote 1 on page 107), and the latter is
much more difficult to find out.

What is important to note is that a fixed layout is always a
tradeoff: a too conservative approach, as for instance designing for
a resolution of 640 × 480 pixels, will probably annoy most users,
whereas if the design is optimised for, let us say, a width of 1280
pixels, many of them who do not maximise their browser window
will have to make horizontal scroll to be able to see all the contents
of the page, regardless of their screen resolution.

An option may be to follow current trends on the web. For in-
stance, the table on figure 3 shows the results of a comparison made
by Tanaka (2009) of the evolution of the layout width of some large
web sites between 2006 and 2008. While the four compared sites
were optimised for a width of 800 pixels in 2006, in 2008 all of them
have switched to 1024-width layouts.

Mobile Devices But, if, in the past, opting for a fixed-width layout was to a great
extent a matter of choosing the appropriate resolution for which it
was to be optimised, the growth of mobile devices has only made

CSS Layout Techniques

110

Figure 3. Evolution of the lay-
out width of some large web
sites between 2006 and 2008
(Tanaka, 2009).

2006 2007 2008

Apple 800 × 600 800 × 600 1024 × 768

Microsoft 800 × 600 1024 × 768 1024 × 768

Yahoo! 800 × 600 800 × 600 1024 × 768

Youtube 800 × 600 1024 × 768 1024 × 768

things more complicated. The horizontal scrolling issue1 inherent
to this type of layouts becomes much more noticeable (and prob-
lematic) when the small screens of these devices come into play.
Even with the sophisticated browsers that these devices incorporate
nowadays, and their adaptation algorithms and page zooming capab-
ilities, browsing a fixed-width page is often frustrating, due to the
combination of both horizontal and vertical scrolling that is needed
to read a web page.

It can be argued that liquid layouts are not the right solution
either. Despite they tend to adapt, by nature, much better to small
screens than fixed-with layouts, the browsing experience is so differ-
ent in a mobile device and the difference between the resolution of
computer screens and mobile devices so big that it is very difficult
to create a design that works well for both usage scenarios. Even
an alternate stylesheet is not usually the definitive answer to this is-
sue (although it is better than simply do nothing, of course), but, as
far as far as usability is concerned, the optimal solution necessarily
involves creating another version of the web site (Nielsen, 2009a;
2009b; 2006a). The problem is that not every site can afford the
costs of maintaining a completely different version of the site. And,
in that case, what should be the supported devices? New devices are
constantly appearing: in addition to mobile phones, other devices

1 Actually, there is nothing inherently wrong with horizontal scrolling itself. As
Braganza et al. (2009) found in an experiment conducted to compare different lay-
out and scrolling strategies for the same document that participants spent less time
scrolling and scrolled less often with horizontal-scroll layout. The problem is when
users have to scroll in both directions.

Types of Layouts

111

such as book readers, portable consoles, notebooks and tables are
becoming more and more popular, as is their use for browsing the
web (and this trend can not but increase), each having very different
screen sizes.

Thus, despite from an usability point of view, the ideal solution
is having separate versions of the site optimised for the resolutions
and interaction features of these devices, it is also true that for those
who can not afford to maintain several versions of the site, as a gen-
eral rule a liquid layout will degrade better when it is viewed on a
small screen.

Liquid LaLiquid Layyoutsouts

Liquid, or fluid layouts, are those whose width dynamically changes
to adapt to that of the user’s browser window: whenever the user in-
creases or reduces the width of his browser window, so does the lay-
out stretch or shrink accordingly to fit all the available width (or a
percentage of it).

Liquid layouts can be done in CSS setting the width (of the
whole layout, its columns, or both) in percentages. For instance, a
two-column layout that fit the whole window can be done with the
following rules:

#nav {

width: 33%;

}

#maintext {

width: 67%;

float: right;

}

The result of the rules above is sketched on figure 4, which shows
how the layout fit all the available width of the browser window
(since the sum of the widths of the two columns is 100%) and
the whole layout adapts proportionally when the dimensions of the
browser window change.

Issues with liquid layouts

CSS Layout Techniques

112

Figure 4. A liquid layout made up of two columns. The main content area (on green in the figure) has a width of
67%, and the navigation menu (on red) has a width of 33%. Therefore, both columns will always fit all the available
width of the browser window, stretching and shrinking as it is enlarged or reduced.

Although this ability to accommodate to the dimensions of the
browser window seems to indicate that liquid layouts are better than
fixed ones, they run into other problems, the length of text lines being
the most frequently cited.

Another issue of liquid layouts, already commented on page
108 is that of images. When images and other fixed-width elements
are inserted into a liquid layout, they do not mix well with the pro-
portions.

All of that has led Zeldman (2003, p. 278) to say:

The CSS box model works well when used to create layouts based on ab-
solute pixel values, but its complexity can make it cumbersome, unintuit-
ive, and even counterproductive when you try to create percentage‑based
(“liquid”) layouts that reflow to fit the visitor’s monitor.

Elastic LaElastic Layyoutsouts

Another possibility that tries to conciliate the flexibility of liquid lay-
outs with the control over the line length of fixed-width designs is
what has been known as elastic layouts. In them, the width of the

Types of Layouts

113

columns are expressed in em units, so that they are resized when the
user increases or reduces the size of the font, while maintaining the
readability.

Hybrid LaHybrid Layyoutsouts

Finally, it is possible to create countless variations of the mentioned
types of layouts simply by mixing different units of measurement or
limiting the flexibility range of a liquid or elastic layout (Gillenwa-
ter, 2009, p. 11).

TThe Lhe Long Dong Debaebattee

As Clarke (2007a, p. 90) has stated, “arguments will no doubt con-
tinue to rage on between those who prefer to make fixed-width
designs for what they think is the average minimum window width
(nominally 800 pixels) and those who believe designs should be
flexible to make the most of a visitor’s screen space, no matter what
the window size”. The same idea had been pointed out by Holz-
schlag (Holzschlag, 2005b), talking about the limitations of CSS to
manage line-lengths:

It is my belief that this limitation has frustrated Web designers signific-
antly enough so as to cause a desire to regain at least some of the width
control we had when we used centered, table-based layouts. This fixed-
width type of layout was extremely prevalent for a time, until a move to-
ward liquid layouts became all the rage.

But sometime in the past two years, the reappearance of centered,
fixed designs emerged —and from an intriguing place: the Web stand-
ards design community. From Douglas Bowman to Jeffrey Zeldman and
right on down the line, fixed, centered designs have stolen the day. An in-
teresting phenomenon indeed.

Although such debate is still open, and it is out of the scope of this
thesis to incline for one or another layout strategy, this section has
shown the different available options.

CSS Layout Techniques

114

Equal‑‑Height Columns

One of the most obvious flaws of CSS concerning layout is its in-
ability to define two elements of the same height, something that is
an essential feature to keep a sense of vertical motion in any layout,
and that is absolutely necessary to obtain two or more equal-height
columns. Of course, it is possible to define an explicit height for the
involved elements, using any CSS length unit or a percentage, as for
example:

#content, #sidebar {

height: 600px;

}

But, as it has been stated in the previous chapter, setting explicit
heights in CSS is not practical in most situations, because the self
nature of the web keeps us from knowing which is the appropriate
height that an element must have to confine its contents without
overlapping or cropping issues. Only in certain scenarios, for specif-
ic blocks of content that the designer have under his control, may
be possible to define a height in “em” and yet be confident, to a cer-
tain extent, that the so defined columns will remain the same height
when the resolution or the font size change. This is what Clarke
(2007b) does in the example shown in figure 5. The code respons-
ible for making the sections Worriers, Worries and Worrydone of the
same height is excerpted below (Clarke, 2007b, p. 93):

#worriers, #worries, #worrydone {

float: left;

min-height: 42em;

width: 220px;

margin-right: 20px;

padding-bottom: 1em;

background: url(../images/worryone-b.png) no-repeat

0 100%;

}

Types of Layouts

115

Figure 5. In this example,
Clarke (2007b) is using an

explicit height (min-height to
be precise) to force Worriers,
Worries and Worrydone sec-

tions to have the same height,
without adding any container
(as most techniques for simu-

lating equal-height columns
do). This approach is error

prone and can only be ap-
plied in very concrete situ-

ations. In addition, it requires
that the elements for which
an explicit height is defined

have also a fixed width.

FFaux Caux Columnsolumns

Some techniques have been developed to overcome the inability of
CSS to create two or more columns of the same height, of which the
most popular is Faux Columns (Cederholm, 2004).

Actually, this technique does not make the columns equal in
height, but creates that illusion applying a vertically tiled background
image to their container (depending on the complexity of the layout
and the design of the site, sometimes a background colour may suf-
fice).

In his article, Cederholm (2004) explains how this technique is
applied to his own web site, Simplebits1, which is shown in figure 6 as
it could be seen on January 2004, when his article was published.

CSS Layout Techniques

116

Figure 6. Simplebits, the web
site of Dan Cederholm, au-
thor of Faux Columns tech-
nique, as it could be seen on
January 2004.

As it can be seen on that figure, Simplebits is using a two-column
layout. If we open it in a web browser, we will discover that it has
a fixed layout (that is, it does not fit the size of the browser win-
dow), centered on the screen. Examining its style sheet, we find that
it has a width of 750 pixels, with a right sidebar of 240 pixels, be-
ing the remaining width (750 - 240 = 510 pixels) for the main con-
tent area of the page. As it can be seen, both columns are —or, at
least, look as if they were— the same height. To accomplish such
design, Cederholm is using a background image (see figure 7) that
“is no more than a few pixels tall, but when vertically tiled, it creates
the coloured columns that will flow all the way down to the bottom
of the page —regardless of the length of content in the columns” (Ceder-
holm, 2004).

The background image is being added to the body element with
the next declaration:

1 simplebits.com is the web site of Dan Cederholm, author of Faux Columns. Al-
though the design of the site has changed, the version that is described here,
corresponding to January 2004, is available at http://web.archive.org/web/
20040117030932/http://www.simplebits.com/index.html.

Equal‑Height Columns

117

http://simplebits.com/
http://web.archive.org/web/20040117030932/http://www.simplebits.com/index.html
http://web.archive.org/web/20040117030932/http://www.simplebits.com/index.html

Figure 7. The background im-
age used in Simplebits for ap-

plying the Faux Columns
technique. When it is vertic-

ally tiled, it creates the visual
effect of having two equal-

height columns: a blank area
for the main content of the

page and a coloured sidebar
on the right. In addition, dec-

orative borders are added to
both sides of the layout, that

is conceived to be centered
on the browser window when

it is viewed at resolutions
greater than 800 × 600 pixels.

background: #ccc url(../images/bg_birch_800.gif)

repeat-y 50% 0;

The background image is horizontally centered on the body element
(thanks to the 50% value, a shorthand for background-position:

50% 0), to guarantee that it matches the contents of the page, also
centered on the screen. Note that this technique does not deal with
how the columns are actually laid out, that is, whether absolute posi-
tioning, floats or whatever other method is being used for the layout
of the columns. It focuses on giving them the appearance of being
the same height. As Cederholm states, although Simplebits is using
absolute positioning to create the two-column layout, “equally fine
results can be achieved via the float property”.

The technique is so simple that it is not surprising that similar
approaches had already been used prior its publication. Thus, sev-
eral months before, the Salmon Cream Cheese1 submission to CSS
Zen Garden (Shea, 2003) already used the same concept to obtain
the design shown in figure 8. The underlying structure of how that
layout is done is in turn shown in figure 9. As it can be seen in
both figures, such design consists of a main content area that fits
the browser size (a liquid column) plus a left sidebar for the second-
ary content (‘select a design’, ‘archives’ and ‘resources’), which has
a fixed width of 224px. Both columns expand vertically the whole
length of the page. Although in this case it is not an image, but a
plain colour, what is applied to the container (which, again, is the
body element), the underlying concept is the same than that of Faux
Columns. Cederholm’s merit is to have been the first person who
documented this technique, gave it a name, and demonstrated how

1 Shea, D. (2003, May 7). Salmon Cream Cheese. Retrieved from http://www.cssz-
engarden.com/?cssfile=002/002.css

CSS Layout Techniques

118

http://www.csszengarden.com/?cssfile=002/002.css
http://www.csszengarden.com/?cssfile=002/002.css

Figure 8. Dave Shea’s Salmon
Cream Cheese submission to
CSS Zen Garden. Despite it
had been submitted several
months before the publica-
tion of Faux Columns by Dan
Cederholm (2004), it is using
a very similar method to
achieve coloured columns
that seem to be the same
height. The only difference
with Cederholm’s technique
is that, in this case, a simple
background colour is enough
to obtain the desired effect,
without the need of a back-
ground image.

an image could be applied to achieve more sophisticated effects, like
adorned borders.

More ColumnsAlthough the two examples described above are two-column lay-
outs, the same technique is still applicable for whatever number of
columns. As long as the width of each column is defined in pixels, it
is simply a matter of creating the appropriate image using some
graphical editor. As it has been shown, it is even possible to have one
liquid column, although it must be the rightmost or leftmost one. If
that is not the case, it is even possible to use this technique, at the
cost of adding extra containers. But this would only address the
problem of simulating they are the same height: it is still needed to
work out the issue of the layout itself. For instance, how could it be

Equal‑Height Columns

119

Figure 9. Visual structure of Salmon Cream Cheese, a Dave Shea’s design submitted to CSS Zen Garden several
months before Faux Columns were published. In this case, a solid colour is applied to the background of the body

element, instead of an image, but the underlying principle is the same. As in Simplebits, absolute positioning is
being used for the layout of the columns, although in both cases floats would have been equally valid.

done a three-column layout where the column in the middle is li-
quid?

Sliding Faux Columns Both examples described above are using either a fixed layout
or, in the case of Salmon Cream Cheese, an hybrid layout in which one
of the columns is fixed. But it does not mean that this technique is
not feasible for pure liquid designs (that is, those in which the width
of every column is defined in percentages).

Although the original Faux Columns technique focuses only on
fixed-width layouts, the same idea of using a tiled background image
can be take a step further, as Bowman (Bowman, 2004) and Meyer
(Meyer, 2004b) did, developing the Sliding Faux Columns approach,

CSS Layout Techniques

120

Figure 10. A liquid layout
with two columns of 70% and
30% in width, respectively
(Cederholm, 2008, p. 249).

Figure 11. The background
image for Bulletproof Pretzel
Company is 2000 pixels wide
(an arbitrary width chosen to
span all the design even when
it is viewed on large screens).
By specifying the areas cor-
responding to each column in
the layout proportionally
wide to the width of each
column, we will then be able

“where the tiled image can slide around behind fluid-width columns,
thus creating the equal-height effect while remaining flexible1”
(Cederholm, 2008, p. 226).

To understand how it works, let us suppose a two-column liquid
layout, like that created by Cederholm (2008, pp. 249–285) that is
shown in figure 10. The web site of the fictitious Bulletproof Pretzel
Company specify the columns to be 70% and 30% in width, respect-
ively. The basis of this variant of the Faux Columns technique consists

1 Note that Cederholm (2008) is using here the term flexible as a synonym of liquid,
or fluid, layouts that were described in the opening section of this chapter, where
the different types of layouts that can be done with CSS were enumerated and
briefly discussed.

Equal‑Height Columns

121

on creating the background image wide enough to accommodate
large screens; for instance, 2000 pixels. Then, the area of the image
corresponding to each column in the layout must have a width pro-
portional to its column. In this case, the background colour with
a shadowed edge for the right sidebar must be 2000 × 30% = 600
pixels wide.

Finally, the image must be positioned in the background so that
it can slide behind the column to show only the amount of sidebar
background necessary. This is done positioning it 70% from the left.

One True Layout

This thesis supports (and it is indeed one of its fundamental argu-
ments) that a major liability of CSS for being used for layout is the
lack of a true separation between presentation and content, and that
this is mainly due to the dependence between the logical structure
of the markup and the visual hierarchy of the document when it is
rendered in a web browser. In other words, this thesis states that the
order of the content is dependent on the layout.

There is an advanced technique, though, that could put this into
question. Robinson (2005), in a seminal article, proved that it is
possible to obtain a multi-column layout in any order regardless of
their position in the document source code, using just standard CSS
properties. Specifically, he addresses some of the same problems
tackled by this thesis, to wit (Robinson, 2005):

Total layout flexibility
That is, the ability to order columns logically in the source while dis-
playing them in any order desired. For any number of columns.

Equal height columns
Or more accurately, equal height columns without having to rely on
faux columns.

CSS Layout Techniques

122

Figure 12. The layout on which are based the examples of this section, where each div block represents a column.

<div id="content">

<div class="fruit" id="orange">

...

</div>

<div class="fruit" id="strawberry">

...

</div>

<div class="fruit" id="lime">

...

</div>

</div>

Vertical placement of elements across grids/columns
Designers face the choice of relying on elements being a particular
height, resorting to tables or simply not bothering.

Although his technique, known as One True Layout allows any num-
ber of columns, for the following review I will focus only in a three-
column layout (for more columns, the same principle would be ap-
plied). Thus, all the examples that follow are based on the markup
shown in figure 12. After applying some styles for colours, fonts,
etcetera, but without any layout property (neither float nor posi-
tioning), the result is shown in figure 13.

Of course, there are certain column orders that do not need
any special treatment beyond the normal1 use of floats for obtaining
column layouts. Thus, a common 1-2-3 order would have been
simply achieved with the following rules:

1 Note the italicised use of the adjective “normal”. I am using it to refer to the
nowadays common use of the float property to achieve this type of layouts. Never-
theless, as it was explained in the previous chapter, it was never intended for layout
purposes.

One True Layout

123

Figure 13. Initial situation for
the markup of figure 12, after
applying basic styles of fonts,

colours, borders, some pad-
dings…, but with no layout

properties (neither floats nor
positioning).

CSS Layout Techniques

124

Figure 14. By floating all the
fruits to the left, constraining
their width, and clearing the
footer, it is very easy to ob-
taining a multi-column layout
in the same order than the
source document (1-2-3).
However, the problem of
equal-height columns is still
unresolved.

.fruit {

width: 33%;

float: left;

}

#orange { width: 34%; }

#footer { clear: both; }

In this case I am using percentages for getting a liquid layout of three
columns of equal width, but any other unit could have been used
for the width of the columns. Note that the footer has been cleared,
so that it is right placed below all the floated columns. However, as
it can be seen in the figure above, the issue of getting equal-height
columns is still unresolved. Because three liquid columns are being
used, the aforementioned faux columns technique can not be applied

One True Layout

125

chapters/figure-onetruelayout-123-basic

Figure 15. The same layout of
figure figure 14, now with

equal-height columns.

here. Robinson (2005) also addresses this issue in his article, using
the following technique (the result is shown in figure 15):

#content {

overflow: hidden;

}

.fruit {

padding-bottom: 9999px;

margin-bottom: -9999px;

}

Similarly, there are other combinations that can also be done with
minor changes. For instance, an 1-3-2 layout would be as follows:

CSS Layout Techniques

126

.fruit { width: 33%; }

#orange, #lime {

float: left;

}

#strawberry { float: right; }

Yet another variants would be feasible just playing with the left and
right values of float property, like 3-2-1 or 2-3-1. But, what does it
happen if we want, for example, a 3-1-2 layout? In this case, simply
floating the third column to the left would not work, because of the
rules that govern float behaviour.

Here is when the main achievement of this technique: it basic
principle is combining floats with negative margins. As it was men-
tioned on Chapter 5), negative lengths and percentages are perfectly
legal values for margin and margin-related properties (although,
again, they were intended for minor adjustments, like outdented
paragraphs, hanging punctuation, or side notes, and some special ef-
fects, like slightly overlapping, and not for this use).

Though the whole technique will not be explained here in detail,
the key is the following:

1 All columns are floated to the left.
2 Each column is placed at its desired position using margin-left, if

needed (this is not necessary if it is immediately following the pre-
cedent one in the source code) starting from the first column on the
source code.

3 Whenever a column must go leftmost than the previous floated
columns, this is done using negative margins.

Since it is difficult to understand how it really works just by reading
the above algorithm, I will use a concrete example to explain it. Let
us suppose that we want an 3-1-2 layout. First, the foremost block
in the source code must be placed. To do this, it is floated to the left
and, since it must leave space for the third column to be placed at
its left, a left margin of 33% is applied. After that, the second block
has to be located. Because it is just to the right of the first block, it

One True Layout

127

does not require any special treatment: simply floating it does the
work. The third column serves to illustrate the tough part of this
technique: the other two floated columns plus the margin do not
leave room for the third one (in fact, in this case they are occupying
all the available width of the container):

33% (first column’s left margin) 34% (first column’s width) +
33% (second column’s width) = 100%

Therefore, the third column will be placed below them (see fig-
ure 16).

Now, the third column is being rendered below the other two
columns. But, for calculation purposes, we could think of it as if
it were placed in a imaginary position at the right of second block
(outside the visible area of the viewport). It is time to bring to scene
negative margins. All we need to do then is to set a negative left
margin equal to the sum of the previous space (in this case, 100%).
The resultant CSS code will be:

.fruit {

width: 33%;

float: left;

}

#orange {

width: 34%;

margin-left: 33%;

}

#footer { clear: both; }

#lime {

margin-left: -100%;

}

And the result is shown in figure 17.

CSS Layout Techniques

128

Figure 16. The margin left ap-
plied to the oranges (first
fruit in the source document)
and the width of the oranges
and strawberries do not leave
room for limes at the top of
the content. In addition, the
float rules force a floated ele-
ment to be placed as high as
possible.

One True Layout

129

Figure 17. The 3-1-2 final layout.

CSS Layout Techniques

130

Case Studies
Previous chapters have focused on reviewing current
CSS mechanisms , as well as more advanced
techniques that push CSS2 to its limits, in an attempt
to achieve a greater independence between the
structure of the document and its visual layout.

This chapter presents some case studies, to
demonstrate that such separation is not yet possible,
and that more advanced layout mechanisms are
needed to meet the designers’ requirements.

7

Mismatch between Content Order and Visual
Position

It is not necessary to turn to elaborated examples to reveal some of
the problems of CSS that prevent it from being considered a true
layout language. One of such issues is the dependence between the doc-
ument source order and its layout, or, put another way, between the doc-
ument structure and the visual structure. This can be shown with a very
simple scenario, like a blog post or a news article in a newspaper.

Blog PBlog Postsosts

Blogs are a good tool to illustrate how current CSS layout mechan-
isms are far from providing a true separation between presentation
and content. Whereas most blogs share a common structure, their
markup differs from one to another and tend to imitate, to a great-
er or lesser extent, the same order than their layout. Focusing only
on blog entries, and although the concrete elements may vary, they
contain essentially the same information in every blog, namely:

• Title of the post
• Date of publication
• Categories under which it is published
• Tags
• Number of comments to that entry
• The content itself

However, the markup is often very different from one blog to anoth-
er, specially with regards to the order in which the above elements
appear on the document source code. Just as an example, let us con-
sider the following blogs, which have been chosen on purpose be-
longing to renowned web designers, very compromised with web
standards and also deeply-versed in CSS:

• zeldman.com (Jeffrey Zeldman; see figure 1)
• stuffandnonsense.co.uk (Andy Clarke; see figure 2)
• meyerweb.com (Eric Meyer; see figure 3)
• www.markboulton.co.uk (Mark Boulton; see figure 4)

Case Studies

132

http://www.zeldman.com/2010/01/08/aigany-members-series-the-one-that-got-away/
http://stuffandnonsense.co.uk/blog/about/advanced_css_styling_workshop_example/
http://meyerweb.com/eric/thoughts/2009/09/07/html5-and-you/
http://www.markboulton.co.uk/journal/comments/web-directions-typographic-structure

• stopdesign.com (Douglas Bowman; see figure 5)
• jasonsantamaria.com (Jason Santa Maria; see figure 6)

For illustrative purposes, I will focus only on the title of each post
and the date when they have been published. If we think on the
markup to represent a blog entry solely from a structural point of
view, leaving aside presentational considerations, most of us would
agree that the right order for such elements would be: first the title
of the post and then the date of publication (probably together with
the other metadata of the entry such as the categories to which it
belongs, the number of comments, etcetera). Therefore, a possible
markup for blog entries would be as follows:

<div class="entry">

<h1>Lorem Ipsum</h1> <!-- Title of the post -->

11 <abbr

title="December">Dec</abbr> 2009

<div class="content">

...

</div>

</div>

As it can be seen, the blog entry is enclosed in a div block, thus
grouping all the elements that form the blog entry, because they are
a related content that can be seen as a logical section of the doc-
ument. This block is given a significative class name: entry (other
names like post or article would have been also appropriate). The
title of the post is represented with a h1 element, and it is followed
by the date of the entry. However, many blogs follows the newspa-
per tradition of placing the date in front of the title, as in the blogs of
Zeldman (figure 1), Boulton (figure 4), and Santa Maria (figure 6).
Although this seems to be a minor variation with respect the sugges-
ted markup above, the truth is that the source code of each of the
reviewed blog posts is tightly coupled to their layout.

Thus, Zeldman puts the date before the title of the post:

Mismatch between Content Order and Visual Position

133

http://stopdesign.com/archive/2009/03/20/goodbye-google.html
http://jasonsantamaria.com/articles/in-sugar-we-trust/

Figure 1. A blog entry by Jef-
frey Zeldman.

Case Studies

134

Figure 2. A blog entry by
Andy Clarke.

Mismatch between Content Order and Visual Position

135

Figure 3. A blog entry by by
Meyer.

Case Studies

136

Figure 4. A blog entry by
Mark Boulton.

Mismatch between Content Order and Visual Position

137

Figure 5. A blog entry by
Douglas Bowman.

Case Studies

138

Figure 6. A blog entry Jason
by Santa Maria.

Mismatch between Content Order and Visual Position

139

<div class="timestamp">

<h3><a href="http://www.zeldman.com/2010/01/08/

aigany-members-series-the-one-that-got-away/">8 Jan

2010 8 am eastern</h3>

</div>

<h2>AIGANY / MEMBERS SERIES: THE ONE THAT GOT AWAY</h2>

There is no doubt, though, that Zeldman agrees with the logical
structure suggested above, since he is using an h2 heading for the
title and a h3 heading for the date. That is, his code is showing that
he actually considers the date to be logically contained into the blog
entry. However, the order or the markup follows that of the visual
layout

The same happens in Boulton’s blog, other author that also
places the date above the title of the post:

<div class="post" id="post-812">

<div class="posttitle">

<p class="date">October 18th, 2009</p>

<h2>Web Directions &

Typographic Structure</h2>

</div>

...

</div>

The last of the reviewed blogs that set the date above the title, Santa
Maria’s one, is however using a similar HTML structure to what I
proposed at the beginning of this section, where the date (and in
this case other metadata) follows the title:

Case Studies

140

<h1 class="post-head">In Sugar We Trust</h1>

<div id="post-meta-top">

<li class="date">2009 Oct

26

<li class="comms">Comments

38

<li class="cats">Published In ...

/li>

<li class="prev"> ...

<li class="next"> ...

</div>

<div id="content"> ... </div>

So it seems that CSS does allow, after all, this type of changes in the
position of the elements on the page without compromising the lo-
gical order of the content. Unfortunately, this is not usually a bullet-
proof solution.

To understand how Santa Maria has achieved this (and its
weaknesses), I am going to do the same for the more reduced
HTML code of my example that was shown on page 133.

This type of changes between the structure of the markup and
the arrangements of the elements on the screen is only possible by
means of absolute positioning. The first step is therefore to take the
date out of the normal document flow and position it before its pre-
ceding h1 element in the source code:

.entry { position: relative; }

.date {

position: absolute;

top: 0;

}

Note that the first rule is needed to make the containing div for
the entry to become the containing block for the absolute posi-

Mismatch between Content Order and Visual Position

141

Figure 7. When the browser
text size is increased, absolute

positioned elements may
overlap the rest of the ele-

ments of the page (either po-
sitioned or not), or be hidden

by them, depending on the
order they have been defined

in the document source or-
der. In this case, Santa Maria

is taking a list with the blog
entry metadata out of the

normal flow and putting it
above the title of the post.

When the browser text size is
increased enough, content

overlaps.

tioned element (otherwise, it would be positioned at the top of the
the page, or the first positioned ancestor element). Now, there is
needed to make room for the date not to overlap the entry title:

.entry { padding-top: 1.6em; }

Actually, the value of the top padding is just an example: it will
depend on the font size of both title and date, the wanted space
between them and the containing div, whether the date fits in one
line or text or can expand more, etcetera. The problem is that, as
long as absolute positioning is involved, the solution does not work
always, under ever circumstance. Returning to the Santa Maria ex-
ample, if we increase the font size of the browser, the absolute po-
sitioned list with the metadata of the entry overlaps the content be-
low it, as it is shown in figure 7.

Newspaper HeadlinesNewspaper Headlines

The same that have been said here for the titles of blog posts and
their publication date also applies to the headline and summary of a
news article in a newspaper. Although the summary usually follows
the headline, sometimes, designers of the newspaper decide to put
it above the headline, as in the six-column headline of the Canadian
newspaper that is shown in figure 8 (Berry, 2004, p. 46). In the main
news article of that page, the headline comes ofter the summary.
Nevertheless, it is still clear what the headline is, thanks to its much
bigger size and the use of a bold face, and there is little doubt that
reader’s eyes will be attracted first to the headline, and only then he
will probably focus on the summary. In this case, there is no doubt

Case Studies

142

Figure 8. A page from canadi-
an newspaper National Post.
In the main news article, the
summary is before the head-
line, whereas in others it is
below. However, it is clear
that if it that page had been
written in HTML, the struc-
ture of a news article should
remain the same. Picture
from the Contemporary
Newspaper Design (Berry,
2004, p. 46)

Mismatch between Content Order and Visual Position

143

that (if we concentrate only in that article, ignoring the rest of the
elements of the page), the order of the equivalent HTML markup
would have been1:

<h2>A tangled tale of kinship and race</h2>

<p class="summary">Since 1913, Thomas Jefferson’s

descendants ... </p>

<p class="author">By <cite>...</cite></p>

...

However, in other news articles, the summary is below the title. And
this happens even on the same page of the same newspaper. That
is the case of the article titled “American museum exposes phoney
glamour of drugs”. Why should both news be represented differ-
ently? And yet, as for the case of blog posts, even these minor vari-
ations in the layout over the structure of the underlying HTML are
only possible in CSS through absolute positioning, which, as have
already been stated, does not guarantee that it works for every situ-
ation. On the contrary, usually even a simple change on the font
size may cause overlapping issues; a liquid layout could not be used;
and —which is particularly problematic for the case of newspapers,
usually based on content management systems (CMS)— it prohib-
its the use of templates, because the text of the summaries will prob-
ably be very different from some news to others and occupy differ-
ent number of text lines, thus incurring overlapping, unless manual
adjustments be made for each specific case. But… where is the sep-
aration between presentation and content then?

1 Note that, as for the previous blog post examples, I am focusing only on the order
of the content, here. Although the structure is also important, of course, the con-
crete elements chosen for representing such structure may vary from one author to
another. For example, I am using a normal paragraph with a “semantic” name for
the summary, because in my opinion it is more right than representing it with a sub-
heading (an h3, in this case). But other authors could argue the opposite. Similarly,
the level of the heading that represents the headline is usually not a white and black
issue. Anyway, the concrete elements are, to a great extent, irrelevant for what I am
trying to shown here: the dependency between the layout and the order and struc-
ture of the content (what elements are children of others, which ones follow which
others, etcetera).

Case Studies

144

Floating a Block

The title of this section, which may be too abstract, aims to reflect
that CSS float property lacks the power of the similar features
that can be found in desktop publishing tools, even if we consider
as such applications more oriented towards the domestic user and
word processing, such as Microsoft Word or Apple Pages. Whereas
in those tools the user can specify many options for how the text
must flow around a floated object, in CSS we are limited to float it to
the left or to the right. This, along with the fact that floats in CSS are
highly dependent on the order and structure of the source code, lim-
it the type of layouts that we can currently do with Cascading Style
Sheets.

To illustrate the stated above, I will make use of two examples.
The first one is a website that I did a few years ago for a new master
in web engineering that we started to teach at the Computer Science
School of University Oviedo in 2006. The second example comes
from a local magazine of the region of Biot (France). When I was
starting to write this dissertation, during my short research stay
at W3C Office in Sophia Antipolis, one day, after lunch, while we
were drinking a coffee sitting on the sofas in the pleasant living
room of our office, I picked up the Summer 2009 issue of BIOTinfo
magazine and —I already had begun to see layouts everywhere—
said: “Look, Bert, a very simple layout that however can not be
made in CSS.”

“L”-shape La“L”-shape Layyoutsouts

The first example is shown in figure 9. It is a small, static web site
that I did for promoting our master in web engineering. It uses
a three-column hybrid layout, where the main content is in the
middle column, and left and right columns contain highlighted in-
formation about dates, contact information, whom is the master ori-
ented, etcetera. Sidebars have an fixed width (defined in pixels),
while the main content is liquid (it expands to fit the available
width). Finally, the maximum available width is limited in the con-
tainer using a max-width property.

Mismatch between Content Order and Visual Position

145

Figure 9. Website of the
Master in Web Engineering at

University of Oviedo (as it
was seen in 2006, when I de-

signed it). It uses a three-
column layout, and my initial

purpose was that the middle
column, where it is the main

content, expanded under the
left one to maximise the avail-
able width when the page was

rendered on a small browser
window, making a sort of “L”

shape. But this is not cur-
rently possible with floats in

CSS (without changing the
logical order of the source

code).

My initial purpose was that main content expanded beneath
the highlighted boxes of the left column, thus making a sort of
“L”-shape. Leaving aside aesthetic considerations1, this would make
sense for two reasons:

• The main content is the area which content is more probable to
grow, while the other two columns should usually remain more or
less the same.

1 Unfortunately, I am not a graphic designer —despite how much I would like to
be— and therefore neither this example nor any other of my own examples in this
dissertation pretend to be an example of good design, and they must only be taken
for illustrative purposes.

Case Studies

146

Figure 10. This is the initial
desired behaviour for the
Master in Web Engineering
(MIW) website: the liquid
main content area should ex-
pand below the highlighted
content to fit all the available
width of the page container,
thus improving the user ex-
perience in small screens.

• Until a mobile version were made, I wanted that the website were
reasonably legible in a small screen, or with a reduced browser win-
dow.

My first assumption when designing the information architecture of
the site has proven to be truth. Although I do not maintain the web-
site anymore, its design has been kept, and the content in the home
page has increased a lot, as can be seen in its current online version1.

As for the second requisite, I would have liked that the layout
behaved as it is depicted in figure 10.

The only tool that allows this type of layouts in CSS is float. In
fact, this is quite similar to the intended purpose of floats: the only
difference is that I am floating some pieces of content, enclosed in
div blocks, instead of an image. But apart from that the scenario is
the same.

There is, though, a problem with float that prevent it to be used
for achieving effects like that, and that has already been mentioned

1 http://www15.uniovi.es/master/ingenieriaweb/

Floating a Block

147

http://www15.uniovi.es/master/ingenieriaweb/

Figure 11. Backgrounds and
borders expand beneath the
floated elements. This is the

right behaviour according to
the specification, because

float shortened the line boxes
of the surrounding elements,

not the boxes themselves.
That is, is the content of an
element, and not its gener-

ated box, that flows around a
floated element.

Figure 12. After applying a
left margin to the headings of

the main content area, we
avoid that they are hidden be-

neath the rounded floated
boxes, but we have gained an-

other undesired effect.

on a previous chapter. It is what I titled What Flows Is the Content, Not the
Box Itself (see p. 104). Due to what was described there, if we simply
did something like this:

.highlighted {

float: left;

clear: left;

width: 243px;

margin: 0 0 15px;

}

Case Studies

148

Then we would obtain the result shown in figure 11. The only way of
avoiding that is to specify a margin left for at least the rounded titles:

h3 {

margin-left: 270px

}

But then we would not obtain the desired layout shown in figure 10,
but the unpleasant one shown figure 12.

Another ExampleAnother Example

Another example of the inability of floats to carry out certain layouts
can be found in figure 13. It is a page of BIOTinfos, the municipal
magazine about the village of Biot (Sophia Antipolis, France). Spe-
cifically, I am going to focus on the two pink boxes that appears at
the bottom of the page: Les animations and Biot terre de centenaires!.

Once again, there is probably not a single right markup for that
content. Anyway, this is to a large extent irrelevant for this example:
once chosen one markup, if separation between presentation and
content were a reality, the final layout should be doable with CSS,
regardless of what such markup is. Therefore, let us suppose that the
HTML for that piece of content were the shown in figure 14.

I would omit the explanation of some style rules applied to not
make this chapter very long, focusing only on the part on which I
am most interested. Thus, after applying some style rules to the ini-
tial markup, I will take as a starting point for this design exercise the
layout that is shown in this figure.

Actually, to accomplish such layout, I have already had to modi-
fy the markup shown in figure 14. To achieve the pink border on
the right, two extra divs have been added as wrappers of the initial
markup:

<div id="container">

<div id="content">

... <!-- The initial markup goes here -->

</div>

</container>

Floating a Block

149

chapters/figure-biot-magazine-1

Figure 13. Page from the
2009 July-August issue of
BIOTinfos, the magazine

with local information about
the village of Biot (Sophia

Antipolis, France). The two
pink boxes on the half bottom

of the page show a relatively
simple layout that, however,

can not be currently done
with CSS.

The outer div, #container, sets as a background the dark pink col-
our that is visible in the right column, and a right padding equal to
the desired width of such column. It is also relatively positioned to
act as a containing block for the absolute positioned h1 image. As for
the #content div, it sets its background colour as white and estab-
lishes some paddings (padding: 4em 2em;). Finally, the width of
#biot-centenaires have been set, and the image within it floated
to the right. There are, of course, quite a few more rules applied,
but they simply set the colours and typography of the content, and

Case Studies

150

<h1><img src="social.png" alt="Social, humanitaire, vie

citoyenne"/></h1>

<div id="animations">

<h2>Les animations</h2>

<p>Un séjour dans la région des lacs italiens du 14 au 17 septembre

09 offrira l’occasion de découvrir ... </p>

<p>La participation est de 501 € par personne comprenant ... </p>

<h3>Jeudi 10 septembre 2009 : journée libre sur Entrevaux et sa

région</h3>

<p>Lorem ipsum dolor sit amet ... </p>

</div>

<div id="biot-centenaires">

<h2>Biot terre de centenaires !</h2>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, ... </p>

</div>

Figure 14. A possible markup for a piece of the content that appears on the page magazine of figure 13.

change some widths, and I will therefore not mention them here for
brevity.

For the first step of the design process, looking at the original
magazine page, we could think of floating the last block of content
(#biot-centenaires), to let the content of the upper block flow
around its left side. But that is not how floats work in CSS. If we
simply apply float: right; to such block, the result is shown in fig-
ure 16. That is right because the preceding block, animations, does
not have an explicit width, so it fills all the available width. There-
fore, the floated element can not be placed higher than the bot-
tom edge of animations. In addition, by floating the bottom block
to the right we have a collateral effect: the right border has been
shortened, due to another typical float behaviour: since #biot-cen-

tenaires is now floated, it is not computed for the height of its con-
tainer, content. This could be easily solved, though, applying one of
the clearing techniques that were reviewed in that chapter. And it is

Floating a Block

151

Figure 15. The starting point
for recreating the layout of

the printed magazine.

not difficult, either, to “pull” its right edge to make it to touch the
right border, with the following two rules:

#biot-centenaires {

margin-right: -2.8em;

padding-right: 3.6em;

}

We could then consider to combine the float with some of the other
CSS mechanisms that allow to move an element with respect to its
current position: negative margins and relative positioning. Using
negative margins, we could try something like this:

#biot-centenaires {

margin-top: -18em;

}

However, that gives a result the design shown in figure 17.

Case Studies

152

Figure 16. After floating the
bottom box to the right, this
is what is obtained. This is
what was expected, since the
preceding element takes the
100% of the available width,
so that #biot-centenaires
can not be placed higher than
the bottom edge of anima-
tions.

Relative positioning is not a solution, either, because, as it has
already been explained in this thesis, positioned elements are totally
removed from the normal flow of the document, so, unless we make
room for them, they will overlap or be overlapped by other elements
on the page. Thus, if we try to do the following:

#biot-centenaires {

position: relative;

top: -18em; /* the same than bottom: 18em */

}

We would obtain the design shown in figure 18.

Styling a Definition List

The following example is based on an example I first made for one
advanced CSS course that I imparted on 2006. After finishing the
first part of the course, devoted to XHTML and the importance of
first creating a good markup, focusing only on its right structure and

Floating a Block

153

Figure 17. Not even using
more complex techniques,

like applying a negative mar-
gin, in addition to the float, to

move the box upwards, we
achieve the desired layout,

and the contents overlap.

Figure 18. Some similar oc-
curs if relative positioning,

instead of a negative margin,
is used. The only thing that

changes respecting figure 17
is that then the content of the

top box overlapped the dis-
placed bottom box, and now
it is this one that overlap the

previous box.

Case Studies

154

on the semantic of the code, I present the students the screen cap-
ture of figure 19, and ask them to do only the XHTML for that page,
applying the advices and best practices about structural markup that
I have just finished to teach.

For the purposes of this dissertation, though, I am going to fo-
cus only on a very specific part of that page, the corresponding to
the categories that appear at the bottom of the page: “Alimenta-
ción”, “Hogar y decoración”, “Moda”, “Papelería”, “Tecnología”,
and “Otros” (the page is supposed to be a fictitious online store:
Caxigalines).

The markup that I considered most appropriate for representing
those categories is a definition list. It is true that other alternatives
would also be valid, such as, for instance, an unordered list with a
heading for the title of each category. But let us assume that it has
been represented as a definition list, I will show how it can be laid
out as appears on the figure. An excerpt of the HTML code for such
list of categories is shown in figure 20.

The tough part of laying out a definition list as is shown in figure
19 is that, unlike an unordered list or a sequence of div blocks, each
logical element of the list is actually compound of two HTML ele-
ments: dt for the title of the category, and dd for the brief descrip-
tion that appears below it. If it had been represented with an un-
ordered list, for example, we could have easily done something like:

#categories li {

width: 33%;

float: left;

}

#papeleria {

clear: left;

}

TThe Solution, Sthe Solution, Step bep by Sty Stepep

As summarily as possible, in the next subsections the steps followed
until obtain the desired layout are outlined.

The List, UnstylishFigure 21 shows the starting point from our example: the list
without styles.

Styling a Definition List

155

Figure 19. Caxigalines.

Fonts and Colours

Case Studies

156

<dl id="categories">

<dt class="alimentacion">

Alimentación

</dt>

<dd class="alimentacion">

Ese vino para sushi que te encantó y no encuentras por

ningún lado, esa especia exótica que te falta para tus

platos, las mejores latas de mejillones del Cantábrico,

...

</dd>

<dt class="decoracion">

Hogar y decoración

</dt>

<dd class="decoracion">

Desde la Aluminiun Chair de Vitra y más de dos mil euros

hasta esos deliciosos tarros de colores para la cocina por

poco más de diez o incluso esos cuchillos de cocina

profesionales que no se venden en las tiendas al uso.

...

</dd>

</dl>

</dl>

Figure 20. The list of categories is represented as a definition list in the markup of Caxigalines, the fictitious online
store shown in figure 19.

After setting the background and text colours for the different ele-
ments, as well as changing some font properties, the list has the ap-
pearance that is shown in figure 22.

Setting the DimensionsIn this step, the final dimensions of both the whole list and each of
its elements are established. To keep the example as simple as pos-
sible, I will use fixed widths and heights: 660 pixels for the whole list,
so each category will have 220 pixels (660 ÷ 3). In addition, it is
needed to make room for the images of each category (which, since
they do not represent actual information, I have chosen to take

Styling a Definition List

157

Figure 21. The definition list
with no styles applied to it

yet.

Figure 22. After defining
some font properties and the
background and text colours

for each element of the list,
this is the result.

them out of the markup and insert them as background images
from CSS). All of that is achieved with the following rules (concrete
background-image property for each dt element have not been in-
cluded in the code below):

Case Studies

158

Figure 23. The list, once the
dimensions of each category
and the background images
have been established.

#categories { width: 660px; }

dt, dd {

width: 180px;

padding: 20px;

}

dt {

padding-top: 270px;

background-repeat: no-repeat;

background-position: 20px 20px;

}

dd { padding-top: 0; }

And the result is shown in figure 23.
Floating the List ElementsOnce the basic styles have been applied, it is time to begin to lay out

the list. The first step is floating all the list elements. As it has already
been mentioned, if the categories had been represented in HTML
as an unordered list, with this step the layout would be almost fin-
ished (only would have to be done a final step to make all categories
to be the same height). Being a definition list, where each category is
actually comprised of two elements (dt and dd) the process is a bit

Styling a Definition List

159

Figure 24. After floating the
categories (each dt and dd

element) to the left, this is the
appearance of the definition

list.

Case Studies

160

more complicated. Thus, after adding the below rules, we would ob-
tain the layout shown in figure 24.

dt, dd {

float: left;

}

Moving the ElementsThis is the difficult part of this design: to realise how the final layout
can be achieved from the situation shown in figure 24. The key is to
apply the same method on which the One True Layout technique
studied in the previous chapter is based: to combine floats with neg-
ative margins to move floated elements until they reach their de-
sired position.

In this case, dd elements must be placed below their corres-
ponding dt, instead of to its right, as they are now. That give us the
following needed displacement:

• Horizontal: they must be moved the width of dd to their left, that is,
220 pixels (width of 180 pixels + 20 pixels of padding for each side).

• Vertical: they must be pushed down a distance equal to the height of
their dt, that is, 310 pixels (270 pixels of padding top plus 20 pixels
of padding bottom to the line height of the category title contained
in each dt).

Applying the following rules, the final layout is almost the definitive
(figure 25):

dd {

margin-top: 310px;

margin-left: -220px;

}

.papeleria {

clear: left;

}

Equal-height ElementsThe final step has to deal with a recurrent problem in CSS: making
certain elements to be the same height (in this case, category de-
scriptions, that is, dd elements). We could think again on the ap-

Styling a Definition List

161

Figure 25. Category descrip-
tions (dd elements) must be

displaced below their corres-
ponding dt. Naturally, clear-

ing them is not an option, be-
cause that would impede the
next category to appear ver-
tically aligned with the cur-

rent one. Therefore, it is
needed to apply negative

margins to move them down-
wards and left.

Case Studies

162

proach that the aforementioned One True Layout technique used for
this problem:

dd {

margin-bottom: -9999px;

padding-bottom: 9999px;

}

The code above produces the desired final layout, which can be seen
in figure 26).

The other option would have been applying the well-known
Faux Columns technique, using an image with the same six colours
than those of the category list, tall enough as to support increasing
several times the text size of the browser. However, although in this
case this could have been relatively easy, it would have not been
possible if the three columns would had not have a fixed size. Note
that, if this technique were applied, there would been also necessary
that the whole list actually contained its elements. Since all its ele-
ments are floated, some of the clearing techniques should be used.
Below is one possible code that would work for this other alternat-
ive (as long as an appropriate background image were used):

#categories {

background: url(img/categories_bg.png) 50% 50%

no-repeat;

float: left;

}

CConclusionsonclusions

From the thirty attendants to the advanced CSS course mentioned
at the beginning of this section, all of them employed as web de-
velopers, nobody represented the list of categories as a definition
list, but as several div blocks or, at best, as an unordered list with a
heading for the title of each category. Other alternatives were much
worse. This is a pattern that is often repeated in my courses: the
more experienced is the course, the worse is the markup that they
do for this exercise, despite how much I insist on they to ignore the
visual appearance of the page once finished, and concentrate only

Styling a Definition List

163

Figure 26. The final step con-
sists on making all the cat-
egories to be (or look like)

the same height. This can be
done in two different ways:

by using the same approach
of One True Layout tech-

nique (setting for each dd ele-
ment an enormous negative

bottom margin with the same
value for the bottom pad-

ding), or applying the classic
Faux Columns method, de-

fining a background image for
the category list.

Case Studies

164

on the structural markup that they would consider as the best for
the information to be represented. Nevertheless, with newcomers
to web design, who have never seen anything about CSS before,
the results for this exercise are usually much better, and they reach
without difficulties a clean and logical HTML.

This is not surprising, tough, and it simply shows how people
who are trained on CSS, instinctively tend to be always thinking in
how that markup could be later laid out, instead of focusing on the
structure and semantic of their HTML code. Whilst this is not prob-
ably enough to be considered a probatory evidence, in my opinion
it does suggest that not every layout can be done in CSS regardless of
the underlying markup (or, even if possible, it may be very difficult
to get done), and this is a lesson that more experienced designers
have learned very well.

Vertical Grid

The next case study aims to illustrate how certain layouts, even
though feasible, are too complex to be done in CSS, specially when
compared how easy it would be using a desktop publishing tool, or
even some of the layout languages reviewed on Chapter 4. This case
study can be considered a mix of the two previous examples: the
layout resembles that of the definition list, and the same technique
of combining floats and negative margins will be in fact applied to
accomplish it; but the dimensions for each piece of content varies,
thus involving more changes between the linear order of the source
document and its visual layout.

This example is based on an event calendar page from the Span-
ish magazine YoDona, shown in figure 27, weekly distributed with El
Mundo newspaper. For brevity, I will not show the whole detailed
process of how the layout have been performed in CSS, as it was
done for the previous examples, but I will merely describe the over-
all technique followed to accomplish the layout of figure 28.

Since it might be difficult to know what images are associated
with what text, specially for a non Spanish-speaking reader, figure
29 shows the distribution of modules in the which, where different

Styling a Definition List

165

Figure 27. YoDona.

pieces of content (that is, each event) are highlighting with different
colours.

For this example, I have opted for representing the events as an
unordered list, where each event is a li element. All the events share
the following structure:

• Title of the event
• Author (otherwise, a short tagline)
• Date of the event (day of the week and day of the month)

Case Studies

166

Figure 28. YoDona.

Vertical Grid

167

Figure 29. YoDona.

• An image representative of the event, intended to attract the read-
er’s attention

• A short description
• Where to get more info about this event (a web site or telephone

number)

Case Studies

168

Following there is an example of how a single event is modelled in
HTML:

<li id="diesirae">

<h3><cite>Dies Irae</cite></h3>

<h4>Marta Carrasco</h4>

<p class="date">

Viernes <span

class="day">13

</p>

<p class="description">

<img src="images/diesirae.jpg" alt="Escena de

«Dies Irae»"/> La bailarina y coreógrafa fusiona danza

y teatro en esta revisión furiosa e irreverente del

Réquiem de Mozart para 15 intérpretes. Hasta el 22 de

noviembre en el Festival de Otoño de Madrid. <span

class="moreinfo">Más <abbr

title="información">inf.</abbr>: <a

href="http://teatroabadia.com/

">teatroabadia.com</p>

In this case, the grid used by this page of the magazine is obvious: 4
rows × 5 columns. Every column has the same width, but rows are of
different height. Specifically, first and second rows are equal height,
the third one is shorter, and the fourth row is larger than the two
first ones. Let us see how the unordered list can be laid out to mimic
the design of the magazine.

For this example I will use again a fixed width. Specifically, I am
defining a width of 900 pixels for the calendar (the whole list), thus
obtaining five columns of 180 pixels.

GGenereneral Stal Stylesyles

To accomplish the layout, first the following general styles are first
applied:

Vertical Grid

169

#agenda li {

width: 170px;

padding-top: 65px;

min-height: 235px;

float: left;

position: relative;

}

#agenda img {

width: 180px;

height: 100%;

position: absolute;

top: 0;

}

#agenda .date {

position: absolute;

top: 0;

}

Each li element is first set a width of 170 pixels. I have did it so
because later I will leave a space between the text and the image
for each event of 10 pixels. CSS does not allow to define anything
similar to the rowspan or colspan of HTML tables, so the modules
must be simulated, computing vertical and horizontal dimensions
and displacements for each element in the list.

The padding-top of 65 pixels is for leave room for the date, that
must be absolute positioned at the top of each “cell”, because it is
not defined in that position in the HTML, and therefore absolute
positioning have to be used (it is exactly the same situation that
happened in the first of the case studies of this chapter). For that
reason, li must have a value for their position property other than
static, so that they can act as containing blocks for the absolute po-
sitioned date inside.

Finally, each list element is floated to the left.
In addition, all images are set a width of 180 pixels, and a height

of 100% (that is, they will fit the height of its containing li). Al-
though this is far from being a good practice (setting both the width
and the height of images and any other replaced element, because

Case Studies

170

by doing so we are altering their proportions), if each image is care-
fully chosen of a presumably similar ratio to their final aspect, the
distortion may be not excessively noticeable (and we have no other
option if we want a perfectly vertically aligned grid like the one used
in the magazine).

Changing the Dimensions of each ModuleChanging the Dimensions of each Module

Now all list elements must be sized according to the module they
represent in the grid. Despite this is not the most difficult part of
this design exercise, it is a tedious process, specially in a grid like
this where there are several modules of different sizes and orienta-
tion. Put differently, what we are doing in this step is emulating what
rowspan and colspan attributes would have been done if we were
laying out this design with HTML tables.

To not make this chapter longer than it is, I only depict how it
would be for two types of modules.

Two Columns Module
with the Image on the Left

Let us consider, for example, the first item on the top left posi-
tion of the grid: Dies Irae. Remember that each li has been given a
width of 170 pixels; however, since this event spans two columns, its
final width would be 360 pixels (two columns of 180 pixels), to
make room for the image on the left. This can easily be done with
the following code:

li#diesirae {

padding-left: 190px;

}

li#diesirae img {

left: 0;

}

The actual width has been augmented 190 pixels width the left pad-
ding applied, and therefore it will be equals to 170 + 190 = 360
pixels, leaving a 10 pixel separation between the image and the text
on the right.

In addition, the image (that has already been absolute posi-
tioned on the top of its containing li in the previous step), is now
positioned on the left edge of its container.

Vertical Grid

171

One Columns and Two
Rows, with the Image on
the Top

Another very different module is that on the top right corner: La
Barcelona canalla. This time is a single-column module that spans the
first and second row of the grid. We have to apply to it a left padding
of 10 pixels, to separate the text from the other elements on its left,
and then comes the difficult part: the description of the event must
be moved downwards so that its image (Las plumas del Marabú) can
be placed on top of it.

Naturally, this would be very easy if we simply applied the same
method than we did for the previous module, that is, define a pad-
ding (in this case, a padding-top). But, what padding to apply? Be-
cause, unlike the previous li, now we have to define a vertical pad-
ding, instead of a horizontal one, and therefore we encounter the
usual problem in CSS: every time that an explicit height is set, the
layout suffers when not every factor is as we planned (browser text
size, screen resolution, dimensions of the browser window, installed
fonts…).

Other options would be:

• Defining a margin-top
• Using relative positioning to move the li downwards

Each have their advantages and drawbacks, and depending on what
option is finally chosen, the rest of the steps will also vary accord-
ingly. However, both alternatives have exactly the same problem
than before: it is needed to know the height.

To sum up, it is not currently possible to do a layout like this in CSS
without setting an explicit height for the rows of the grid. In other words,
there is no way to define the height of one element in relation to an-
other one.

Therefore, if we want to create this design with CSS, a decision
must be taken for the heights of the rows. In order to be able to
continue and complete the example, I will make the rows to have a
height of 300, 300, 180, and 325 pixels, respectively, as it is depicted
on figure 30.

Once the height of the rows have been established, any of the
three aforementioned alternatives would be feasible for this mod-
ule. For example:

Case Studies

172

Figure 30. YoDona.

li#marabu {

padding-left: 10px;

padding-top: 300px;

}

li#marabu img {

left: 0;

}

Vertical Grid

173

Moving the Elements After resizing each element as it has been done for the two previous
examples, would begin the really tough part of this layout: due to
the complex rules that govern floats, each element has to bee
“manually” moved to its final position, in a similar way to what was
done in the section . Since it would be very verbose to explain here
the whole process, and it depends, as it has been stated before, on
the previous strategy followed for changing the dimensions of each
element, I will simply show one of the multiple possible solutions
for this design (see figure 31).

Conclusions

CSS layouts tend to have a visual structure that matches the linear
order of the document, which limits the designers’ creativity. Of
course, in theory it is possible to alter such order, and that is for
which absolute positioning is intended. In practice, though, as we
have seen for the title and date of blog posts, and the headlines and
summary of news articles in a newspaper, even minor changes in the
layout that mismatch the logical structure of the document are dif-
ficult to achieve with guarantees: unless we know exactly how much
vertical space must be left between the title and the top edge of its
container, absolute positioning is not applicable. And, although it is
possible to reach to a compromise solution that works reasonably
well and resists a few changes in the text size, this is no longer true
if we can not know a priori how many lines of text expands the ab-
solute positioned element. For the case of dates, this may not be so
problematic, but that is not the general case, as it has been shown in
the newspaper example: liquid layouts, mobile devices, and unpre-
dictable text, as is the case of the majority of current websites, run
by content management systems, limits this technique, making ab-
solute positioning almost impracticable.

Other layouts are, however, very difficult to achieve, if more
severe changes between the structure of the document and the visu-
al layout have to be done. Vertical alignment among elements is
simply not possible, unless we define a fixed height for the involved

Case Studies

174

chapters/definition-list

#agenda li {

float: left; width: 170px;

min-height: 235px;

padding: 65px 0 0 190px;

position: relative;

}

#agenda img {

width: 180px; height: 100%;

position: absolute;

left: 0; top: 0;

}

#agenda .date {

position: absolute; top: 0;

}

li#marabu {

position: relative; top: 300px;

padding-left: 10px;

}

li#marabu img { margin-top: -300px; }

li#juliettelewis {

margin-right: 180px;

}

li#almudenabaeza,

li#juliettelewis {

padding-left: 0;

padding-right: 190px;

text-align: right;

}

li#almudenabaeza img,

li#juliettelewis img {

margin-left: 180px;

}

li#juliettelewis {

min-height: 415px;

}

li#juliettelewis img { height: 480px; }

li#loscondenados {

margin-top: -180px;

min-height: 115px;

width: 350px;

}

li#maisonmumm {

padding-left: 0;

padding-right: 370px;

height: 260px;

}

li#maisonmumm img {

width: 360px;

margin-left: 180px;

}

#muchomas {

float: left;

width: 349px;

min-height: 324px;

margin-top: -180px;

padding-top: 180px;

padding-left: 10px;

background: url(img/arrow.png) right

top no-repeat;

border-right: 1px solid black;

border-bottom: 1px solid black;

}

Figure 31. A possible solution for the layout of YoDona magazine, defining explicit “row” heights and using a mix
of floats, negative margins, and absolute and relative positioning.

Conclusions

175

elements. But then, as it has been shown, we would run into the
same problems than absolute positioning.

This is one of the reasons why is so difficult to find examples
of web sites where the design changes drastically from one pages
to others, something that is, however, very common in printed
magazines.

Case Studies

176

The Problem of
Separation between
Structure and
Layout
This chapter is the end of the first part of this
dissertation, which have been devoted to demonstrate
the hypothesis that opened this thesis: CSS is not a
layout language. Previous chapters have revealed the
major issues of floats and absolute positioning and
their inadequacy as layout mechanisms. The more
advanced layout techniques and other approaches
also studied in previous chapters can not be
considered a solution to the problem of layout on the
web, either. As a consequence, separation between
content and presentation or, more specifically,
between structure and layout, is not possible with
Cascading Style Sheets in its current version.

8

Introduction

Separation of presentation and content is probably the most com-
mon feature attributed to Cascading Style Sheets, so often repeated
that is has became a commonplace. Nevertheless, it is far from being
true, specially with respect to layout. Whereas style sheets have had
an enormous success removing font tags and other presentational
elements from the markup, there still are many sites that continue
using HTML tables for layout. And even those others with pure CSS
layouts usually have a markup that is dependent, to a greater or less-
er extent, on their final visual layout.

Separation between presenta-
tion and content in CSS is not

longer true when it comes to
layout.

The title of this chapter is not therefore fortuitous, but it has
been meticulously chosen to reflect that Cascading Style Sheets
calls for a further degree of separation to distinguish the low level ty-
pographic aspects of a document, such as font size and type, list
styles, colours, etcetera, for which the technology works particularly
well, from those other high level layout issues, such as the number of
columns of a document or the vertical alignment among different
elements on the page, an area in which Cascading Style Sheets is still
very immature.

Thus, notwithstanding the widespread use of the separation
between presentation and content expression, and to help focusing on
the specific problem tackled by this thesis, I propose to divide the
term presentation into two different components: style and layout
(see figure 1). Whilst the former refers to the aforementioned styl-
istic effects that were traditionally accomplished by font and other
physical elements and attributes, by layout I mean the arrangement
of the elements on the screen or paper when the document is visu-
ally rendered.

On the other hand, although both “content” and “structure” are
often indistinguishably used to refer to the (X)HTML document, I
have favoured here the use of structure over content to emphasise the
fact that the lack of true layout mechanisms in CSS is usually forcing
authors to change the markup to obtain the desired layout, either by
adding superfluous markup —most often in the form of non struc-

The Problem of Separation between Structure and Layout

178

Figure 1. The figure shows a more detailed separation of concerns than the oft-expressed content and presenta-
tion. Although HTML represents well both the content and the structure of the document, and thus both terms
can be used without distinction, this thesis claims that presentation includes both style and layout. While CSS al-
lows to change most stylistic aspects of a document independently of its markup, the same is not true when ap-
plied to layout, breaking thus the promised separation between content and presentation, or, more specifically,
between structure and layout.

tural divs and classes or identifiers, which has been known as classitis
and divitis (Zeldman, 2003)— or altering the logical structure of the
document to convey its visual representation.

CSS Is Not a Layout Language

This is the hypothesis upon which this thesis rests, expressed in its
concisest form: Cascading Style Sheets is not a layout language.
Despite it is, with no doubt, a bold affirmation, given the nicely
designed web sites that can be seen nowadays, entirely made with
standard (X)HTML and CSS, I consider it has been sufficiently
demonstrated in previous chapters that CSS, as we know it today,
is inadequate for carrying out the layouts that web designers are de-
manding: not only there are certain tasks that can not get done with
CSS; many others can only be accomplished adding extra markup
or altering the logical order of the content. And all of them at the
cost of being extremely complex when compared to what could be
done with HTML‑table based layouts.

Introduction

179

This must no be understood, though, as a criticism to the in-
ventors of Cascading Style Sheets. When the first specification of
Cascading Style Sheets appeared (Lie & Bos , 1996), they simply
could not anticipate the way in which it is used today. This has a
simple explanation: the resolution of computer screens. By the time
CSS1 was developed, 640 × 480 and 800 × 600 were the most com-
mon resolutions of computer screens (see table 1).

Table 1. Computer display
resolution in 1997 and 1999,

as it appears in Nielsen
(2000, p. 28). Data for 1997

are calculated based on the
results of 5,000 users who ac-

cessed www.horus.com, and
more than 11,000 parti-

cipants in the GVU survey.
Data for 1999 come from

www.statmarket.com.

Screen resolution 1997 1999

Very small
(640 × 480) 22% 13%

Small
(800 × 600) 47% 55%

Medium
(1024 × 768) 25% 25%

Big
(1280 × 1024 or greater) 6% 2%

Computer display resolution in 1997 and 1999

With those screen resolutions, multicolumn and grid layouts were
so impracticable that most web sites were just a flow of text with just
one column, like the example shown in figure 2. Thus, the only scen-
ario they contemplated was the ability to float an image or a navig-
ation menu to one side of the page and let the content flow around
it, something that were possible in most word processors and, of
course, in publishing tools.

Anyway, the fact is that CSS was born without layout capabil-
ities, and despite the addition of positioning mechanisms to CSS2
(Bos, Lie, Lilley & Jacobs, 1998), and the efforts of web designers
to deal with such a minimal equipment, pushing CSS to its limits, it
still suffers from the same lack of true layout mechanisms.

The Problem of Separation between Structure and Layout

180

Figure 2. The picture shows a
screen capture of the web site
of Massachusetts Institute of
Technology (MIT), as it was
shown in 1996 (extracted
from Web Archive: ht-
tp://web.archive.org/web/

19961224024947/ht-

tp://web.mit.edu/).

Next sections briefly describe each of the problems of Cascad-
ing Style Sheets in respect to layout that have been identified
through the course of this research, and that have already been
demonstrated in the previous chapters.

TThe Phe Prroblem with Foblem with Floaloatsts

Despite the widespread use of
floats as a layout mechanism,
they were never conceived for
that, but as a tool for letting
the content flow around a
floated element.

As it has been stated in a previous chapter, floats were never intended
as a page layout tool, but as a way of allowing the text to flow around
the side of an element (typically, an image). Nevertheless, today it is
the most common technique for doing multi‑column layouts with
CSS. There is a pragmatic reason for this use, to wit, the floats ability
to be cleared, which permits a footer, for example, to be put below
the preceding columns (Meyer, 2004c), something that it is not possible
with absolute positioning.

But, although it is possible to use them to achieve certain lay-
outs, their use presents several problems which are discussed below.

Dependent on the Order
of the Content

The principal inconvenience of using floats for layout purposes
is their dependency on the order of the content in the HTML docu-

CSS Is Not a Layout Language

181

ment. This is due to the restriction, imposed by CSS 2.1 specifica-
tion, that the outer top of a floating box may not be higher than the
outer top of any block or floated box generated by an element earlier
in the source document, nor than the top of any line‑box containing
a box generated by an element earlier in the source document (Bos,
Çelik, Hickson & Lie, 2009, §9.5.1). In other words, what the spe-
cification is saying in the constraints five and six of the cited section,
is that a floated element may not move upwards than any other pre-
ceding element in the source code (be it floated or not).

Analogous rules exist that govern the behaviour of floats with
respect to their horizontal position. Although Robinson (2005) has
demonstrated that it is possible to achieve any number of columns
in any order, his technique, known as its seminal article, One True
Layout, which involves not only floats but also negative margins,
and requires a precise understanding of the box and visual format-
ting models, is beyond the comprehension of the average designer.
As Baron (2006) has stated, “these techniques are extremely com-
plex, fragile, and hard for authors to write”.

It is the Content, and Not
the Box, What Flows

Even in what could be considered a more standard use of this
property, such as aligning an element to the left or the right side of
its container and letting the content flow around its opposite side,
the use of float is not exempt from problems either. Let us think,
for example, of a menu aligned to the left of the page (a simple lay-
out that was quite common a few years ago). If a background were
applied to a block element of the surrounding, it would expand be-
neath the floating menu, as figure 3 is showing. This is due to anoth-
er feature of floats that have already been explained in a previous
chapter: it is the content, and not box of the element itself, what flows.

TThe Phe Prroblem with Aoblem with Absolutbsolute Pe Positioningositioning

Positioning did not form part of the first specification of CSS (Lie &
Bos , 1996). It was publicly announced as a Working Draft (Furman
& Isaacs, 1997) on the www-style@w3.org mailing list on January
31, 1997, and later added to the CSS2 specification (Bos, Lie, Lilley
& Jacobs, 1998). According to the first draft, the inability to expli-
citly control the positions of HTML elements had become a barrier

The Problem of Separation between Structure and Layout

182

http://www.w3.org/TR/CSS2/visuren.html#float-position
chapters/chref
chapters/chref

Figure 3. When a element,
such as a menu, is floated, the
content of the following ele-
ments flows around it, but
not the boxes themselves.
Therefore, if these elements
have a background colour or
a border, they visually go be-
neath the floated element (as
it is shown in the figure on
the left). Thus, a layout like
the shown on the right figure
is not currently possible in
CSS.

to producing rich static HTML documents. Thus, it was born as a
way “to allow authors to exercise greater accuracy in page descrip-
tion and layout”.

The ability of absolute posi-
tioning to take an element
out of the normal flow of the
page is also its major incon-
venience.

The major strength of CSS positioning is its ability to take an
element out of the normal flow of the page, so it allows, in theory, to
place an element at whatever position on the page. But this has be-
came its main problem, too. Since the user agent does not longer
care about the positioned element, the author is the responsible for
control that it does not overlap the rest of elements on the page.
While this might not be a problem when it is used for column lay-
outs, since it is often possible to specify margins or paddings so that
there is room left for the positioned element, this is not usually the
case when we want to move the element vertically on the page. Un-
less we know exactly the height of the positioned element, it is not
possible to use absolute positioning for altering the order of the con-
tent when it is visually rendered. Although most modern browsers
have a very improved zooming feature which works reasonably well
and they are even able to adapt absolute positioned elements when
the user increases the size of the font, it is still possible they overlap
when the browser window is resized, unless the the absolute posi-
tioned elements (or their containers) have an explicit width or
height. Anyway, this feature of some browsers, although represents

CSS Is Not a Layout Language

183

a significant accessibility improvement, is not sanctioned by the
specification, so we should not rely on it.

In any case, even using fixed layouts, it is needed to know a pri-
ori the content of the positioned element to know how much space
the rest of elements of the page must leave to accommodate it, so
absolute positioning is not usually a technique that can be used, for
example, in a Content Management System template, where the ac-
tual content is left to the final user instead of the designer. Some
authors have trying to get the best of both worlds (the independ-
ence of absolute positioning from the order of the content without
removing the element from the normal flow of the document), us-
ing techniques such us Faux Absolute Positioning (Sol, 2008), but,
once more, at the cost of complexity (and, in the specific case of this
technique, extraneous markup too).

A Note on Page Zooming
and Absolute Positioning

Nowadays, with the improved zooming capabilities of browsers,
an absolute positioned layout behaves reasonably well under
changes in the size of the text (since the default behaviour of
browsers tends to be make zoom and not just increase the font size).
Of course, this remains a problem in the case of liquid layouts.

It is true that various recent developments make the height of
elements a little bit more predictable:

• The page zoom function distorts pages less than the text zoom.
• Downloadable fonts avoid uncertainty about which fonts are used
• The W3C CSS Working Group is discussing a property that scales

a font to fit a box instead of the other way round, and a similar fea-
ture is also being considered for images to adapt to their containing
block.

But there is still no guarantee that browsers justify text and break
lines in the same way, even if they use the same downloaded font.
And the height is still only (somewhat) predictable if the width is spe-
cified in ems. And even then the zoom function only keeps the as-
pect ratio of boxes the same if the width does not depend on the
width of the window.

There is the problem of dynamic content, too: if an author
wants to use the same style sheet for multiple pages, or for transla-

The Problem of Separation between Structure and Layout

184

tions of a page, the height of the text will be different. For instance,
if we want two boxes of text to have the same height, we could try to
size the boxes such that they have enough room if the text is written
in Italian (or some other language that uses a lot of space). But then
if the text is in English or Chinese, there would be a lot of wasted
space. It would be much easier if the renderer itself could determ-
ine the height of both boxes and make them exactly the height of the
longer of the two. That is one of the reasons why tables are still used,
despite the disadvantage of having to change the document source
when the design changes.

VVerertical Grids Artical Grids Are Not Pe Not Possibleossible

If multi‑column layouts are not an easy task in CSS, vertical align-
ment of the elements on the page are simply not possible (at least,
not without recurring to methods such as adding non structural
elements to act as containers and floating them and their children
—which, again, is dependent on the order of the content—, using
JavaScript to calculate the height of the elements or using back-
ground images). Decidedly, there should be a simpler manner to
specify, for example, that two columns must have the same height
or that a certain element must be as tall as the sum of other two,
something that was trivial using HTML tables.

MMixing Units Is Not Pixing Units Is Not Possibleossible

Although this is not a so severe problem like the others mentioned
so far, it represents another inconvenience of CSS for layouts: the
inability to mix several length units. One typical example is that of
a two or three column layout where column size has been defined,
let us say, in percentages, and we want to assign a padding to each
column of 1em. Despite there is, of course, technically possible, by
doing so we lose every control over the dimensions of the global lay-
out (we could not make it to adjust to the total available width, since
there is no manner to say that the width of a column must be, for
example, 33% - 2em). And even in the case that the size of each
column were defined in em (assuming that they form an elastic lay-

CSS Is Not a Layout Language

185

out), it would require recalculate margins and paddings every time
a font-size were applied to a whole column.

For this reason, some authors recommend to add an extra div to
every container (Cederholm, 2008, p. 218), to serve as a placehold-
er where to apply margins or paddings in any unit without affecting
the overall layout (since those properties are applied to a child ele-
ment, they do not modify the dimensions of its container).

ExExtrtra Markup Is Ua Markup Is Usually Neededsually Needed

As it has been shown, most layout techniques involve adding extra,
non semantic markup, to obtain the desired effect.

TTherhere Are Are Not Ce Not Cononttenent Reort Reordering Mechanismsdering Mechanisms

One of the missions of graphic designers is to visually present the
content in the most appropriate manner to effectively convey its
message. This involves not only playing with fonts and colours, but
also to arrange the images and text of the original document to ad-
apt them to the medium in which they are being presented. Fre-
quently, this does not match what will be the logical order of the
content if it were displayed as a flow document.

CSS does not provide a mechanism to make this reordering
possible. Elements can not be placed related to other documents
on the page. This is because Cascading Style Sheets has inherited
the notion of flow text documents, as opposed to layout documents
such as magazines, posters and brochures. In other words, it is not
currently possible to do with CSS what traditional publishing tools
like QuarkXPress, Adobe InDesign, Adobe FrameMaker, etcetera,
have let designers do since many years ago (and that even the latest
version of Apple Pages allows now for domestic users too).

Redesign Is Not PRedesign Is Not Possibleossible

The most clear evidence of the lack of true layout mechanisms in
CSS is when it comes to redesign, that is, when we want to com-
pletely change the design of a page. Whereas, if separation between
presentation and content were true, this should be as easy as to in-
dicate a different style sheet to the document, without altering the

The Problem of Separation between Structure and Layout

186

HTML document, this is almost never the case. Except for changes
in the font families, colours and background images, etcetera,
whenever redesign also involves drastic changes in the layout, it usu-
ally implies adding extra markup, altering the logical order of the
content, or both. Thus, this thesis states that redesign is not cur-
rently possible with Cascading Style Sheets without breaking the
separation between presentation and content.

Is It not Possible? What
Does It Happen with CSS
Zen Garden?

Last sentence is certainly bold, especially if one thinks of CSS
Zen Garden. This well‑know web site, launched in 2003 to promote
the use of CSS (its motto is “a demonstration of what can be accom-
plished visually through CSS‑based design”), now holds 210 official
designs —more than one thousand submitted in total—, each one
comprising just one style sheet (and its corresponding background
images) that modify the same HTML document.

Although those designs are apparently very different among
them, with layouts that involves one, two, or three columns, some
others which expands horizontally instead of vertically, etcetera, if
we carefully examine all the designs, what initially looked like radic-
al different designs ends up being just variations of a few common
layouts. Most of the changes are achieved through an intensive use
of image replacement techniques, background images and fine typo-
graphy. But the underlying layout remains almost the same. There
are very few designs that change the order of the different sections
of the page, for example. And, when they do, they usually limit to
move some paragraph to the top or bottom of the page, using abso-
lute positioning with fixed layouts, something that makes them fra-
gile to font size changes and prevents them to adapt gracefully to
small devices, like mobile phones.

Moreover, in order to make such changes possible, the underly-
ing markup is anything but clean: many superfluous, non‑semantic
elements, with a huge amount of classes and identifiers are provided
to give designers the needed hooks for style being applied.

Thus, despite the contribution that CSS Zen Garden has made
to widespread the use of Cascading Style Sheets, it can not be con-
sidered a refutation of the statement that opened this section. I have

CSS Is Not a Layout Language

187

therefore to disagree with the following sentence that appears in the
content of the CSS Zen Garden page:

CSS allows complete and total control over the style of a hypertext docu-
ment.

As far as layout is concerned, the above quoted paragraph is false.

CComplexitomplexityy

CSS is becoming a more complex language than it was intended to
be. This is especially true when referred to layout. Final users should
not have to be aware of the verbose rules, constraints, interdepend-
encies, exceptions, and exceptions to the exceptions, that govern
floats, absolute positioning, collapsing margins, and the box model
and visual formatting model in general.

Lack of VLack of Visual Tisual Toolsools

Related with the problem of complexity, it is the lack of visual tools
for creating advanced CSS layouts in a WYSIWYG way. Despite this
type of applications exist almost since the appearance of Cascading
Style Sheets, and though they have improved in recent years, they
are still very far from the high level of abstraction that is offered by
their corresponding desktop publishing tools. All of them are lim-
ited, to a greater or lesser extent, to provide a visual interface for
editing the underlying CSS rules and properties, but there is no way
to tell them, for example, that an element must be as high as the
sum of other two, or that it must be placed below other element. At
most, what they are commencing to incorporate are templates, that
is, a set of predefined, and more or less configurable, layouts, from
which the author can select the desired one for the document being
edited.

This is not anything but, again, a demonstration of the state-
ment of this thesis: although the existence of this sort of tools could
alleviate the complexity of creating layouts with CSS, it is indeed
that complexity what prevents more advanced tools to exist. The
gap that currently exist between the constraints that could specify
a layout at the desired high level of abstraction, and the low‑level

The Problem of Separation between Structure and Layout

188

properties with which they have to be created in CSS, is so huge that
it can not be automatised by a tool.

Conclusions

As this thesis has demonstrated, Cascading Style Sheets lacks real
layout mechanisms, which prevents a true separation between
presentation and content. Floats were never intended as a layout
tool, and absolute positioning, although very flexible in theory, is
only practical for very concrete situations, where the dimensions
of the positioned element are under the control of the designer, so
the risk of overlapping can be avoided. As a result, both mechan-
isms are not suitable for specifying the overall layout of a document.
Moreover, they often require superfluous markup, or, what is even
worse, to alter the logical order of the content.

Some authors have proved that these properties can be used in
more imaginative ways, combining them with other features of CSS,
like negative margins, to accomplish a greater level of flexibility and
therefore more independence between the structure of the docu-
ment and its visual layout. But this is at the cost of an extreme com-
plexity, beyond the understanding of the average user (if they were
even conscious of their existence). And even in the case of experien-
ced designers who are aware of such techniques and are able to com-
prehend them, these are so difficult to implement that most of the
times they end up relaying on more traditional uses of floats and ab-
solute positioning, despite it leads to a not so clean, structured, and
ordered HTML. Therefore, these techniques, notwithstanding their
undoubtedly merit, serve more as an experiment of what it is pos-
sible to be done with CSS than as actual solutions to be daily used.

But these techniques are telling us something. If web designers
are making such efforts to achieve different ways to specify layouts,
it is because there is a hole in Cascading Style Sheets as we know it
today. Why is nobody attempting to do the same for changing the
colour of the text or the font size of an element? Because CSS

CSS Is Not a Layout Language

189

What we need is to be
able to specify the layout in a

explicit way, instead of having
to deal with low‑‑level mech-
anisms such as floats and ab-

solute positioning.

already works very well for these sort of things. The problem, as this
thesis states, is that we have no way of defining the layout of a docu-
ment explicitly. Instead, users are forced to do it implicitly, dealing
with low‑level mechanisms —namely, floats and absolute position-
ing— which lack the needed expressiveness to to accomplish the
layouts that web designers are demanding nowadays. Making an
analogy with software engineering, I would say that it is like we were
still developing any complex modern application in Assembly lan-
guage. Is it possible? Sure (at least, in theory: after all, everything is
to be machine code). But, is it actually possible? That is, could a C++
compiler, a web browser, or an e-commerce application have been
programmed entirely in that way? Certainly not. The amount of
time required to deal with such a complexity would make it a Her-
culean effort, and these kind of applications would have been prob-
ably never conceived if high level programming languages had not
appeared. Similarly, there are certain tasks that are simply impos-
sible to achieve with CSS. Vertical grids are decidedly an issue, as is
the lack of content reordering mechanisms.

It is therefore necessary to provide Cascading Style Sheets with
mechanisms that allow us to define explicitly the layout of the docu-
ment at a higher level of abstraction, something that designers have
been doing since the invention of grid systems, and which is not yet
possible on the web.

The Problem of Separation between Structure and Layout

190

Proposed Solution:
The CSS3 Template
Layout Module
This chapter describes thoroughly the proposed
solution to the problem of layout on the web. It is a
proposal of addition to CSS, intended to be included
in a future specification of the standard. The solution
presented here mostly corresponds with the CSS3
Template Layout, an official W3C Working Draft, of
which the author of this thesis is one of its editors.

This chapter does not limit to be a transcription of
the current Working Draft, though, but explains the
motivation for some design decisions that have been
taken and discusses some alternatives. In addition,
some extensions that have not yet been accepted to be
part of the module, but that, in this author’s opinion,
would be desirable, are also presented here.

9

Redde Caesari, quae sunt Caesaris

It is complicated to present as the proposed solution of a thesis
something that has been developed —that it is being developed—
within the W3C CSS Working Group1 (CSS-WG), since it is never
the one’s own work exclusively, but the result of a joint effort of the
rest of the members of the group, as well as the community that con-
tributes to it through the public mailing lists, attendants of the con-
ferences and workshops where it has been presented, opinions that
other web designers and CSS experts have expressed in their blogs,
etcetera.

And it is even more difficult when, in case of having to award
the credit to one person, that person would certainly be Bert Bos,
who had already written a first draft of this module when I joined
the CSS-WG. Be it for him, thence, my public recognition in these
lines as the original inventor of the module presented here, of which
I have only been a contributor.

About the Solution

One of the novelties in CSS3 is that it will no longer be a single
monolithic document, but is divided into a set of separate modules.
The solution presented in this thesis to the problem of layout on
the web is one of such modules, the Template Layout Module, a W3C
Working Draft, formerly known as Advanced Layout Module, coau-
thored by this thesis’ author and one of his supervisors.

Being a Working Drat means that it may be modified or even
discarded as a part of CSS3 in case of failure to reach consensus
among the W3C CSS Working Group members. In any case, the
syntax and features that are described here correspond to those of
the version of 2 April 2009, which can be found on this perman-
ent address: www.w3.org/TR/2009/WD-css3-layout-20090402. The
latest version is always available on www.w3.org/TR/css3-layout.

1 www.w3.org/Style/CSS/members

Proposed Solution: The CSS3 Template Layout Module

192

http://www.w3.org/TR/2009/WD-css3-layout-20090402
http://www.w3.org/TR/css3-layout
http://www.w3.org/Style/CSS/members/

Introduction to the Template Layout Module

The Template Layout Module
was conceived with two main
motivations in mind:
a) to define the layout expli-
citly, in terms of rows and
columns and the relation-
ships among them
b) to provide a content‑‑inde-
pendent positioning scheme

As it has been repeatedly argued in this dissertation, it is necessary
to count with a high‑level mechanism that allows to define the lay-
out in a explicit manner. And it should also be possible to position
elements in whatever area of the page regardless of their actual posi-
tion in the source document. To meet these requirements, the pro-
posed solution is built on two main concepts: templates and slots.

A template is a two‑dimensional structure of rows and columns.
Current CSS mechanisms for layout, such as floats, relative and ab-
solute positioning, negative margins, etcetera, operates over the
specific elements to be positioned, and the resultant layout is impli-
citly defined by the complex interactions among all those low‑level
mechanisms that are applied to single elements. Conversely, a tem-
plate explicitly defines the layout of the element to which it is ap-
plied (which can be the whole page if the template is defined in the
body element).

Instead of changing the posi-
tion of the element to which
it is applied, a template sets a
layout policy for its contents.

In other words, a template does not alter the position of the ele-
ment where it is defined. Instead, it defines certain regions, or slots,
where the contents of the element are to be positioned. And it does
explicitly, at a high level of abstraction, in terms of rows and
columns, and the relationships among them, very similar to an
HTML table, but without establishing any binding between the
content and the template. The binding is performed in a second
stage, where concrete elements are positioned into the slots defined
by the template.

A template is made up of slots, which can span several rows and
columns, according to the syntax and rules that are explained in the
following section. Slots represent regions where the contents of the
template element can be positioned, regardless of their actual order
in the source code of the document. This is shown in figure 1, which
depicts a template made up of four rows and three columns that in
turn define six slots (named from a to f in the figure).

That layout could have been obtained with the following tem-
plate (the concrete syntax is detailed in the following section):

About the Solution

193

Figure 1. A layout made up of
four rows and three columns
that defines six slots (named
a, b… f) where the contents

of the element can be posi-
tioned.

body {

display: "aaa" /auto

"bbc" /225px

"dec" /auto

"fff" /auto

* * 14em;

}

The dimensions of a template may depend on its content or be con-
strained setting certain values for the height of rows and the width
of columns.

Finally, the contents of the template element can be positioned
in any of the slots defined by the template, just indicating it with the
position property, as for example:

#recent-entries { position: d; }

#latest-comments { position: e; }

#about { position: c; }

#blogroll { position: c; }

Proposed Solution: The CSS3 Template Layout Module

194

Once the rationale behind the Template Layout Module has been
introduced and a very simple use case has been shown, it is time to
explain the syntax of the module in detail, which is done in follow-
ing sections.

Template Definition

A template defines the layout of the element in which it is set, in
terms of rows and columns. The proposed syntax for defining tem-
plates is as follows:

inline? [<string> [/<row-height>]?]+ <col-width>*

As it can be seen, instead of creating a new property, the module
uses the display property, for which a new value is defined, consist-
ing of one string of characters per each row in the template. Each
string can be optionally followed by its height, and it is also possible
to define a width for each column in the template. The actual syntax
and behaviour for heights and widths is explained below.

An optional keyword inline may appear at the start of the
value, indicating in that case that the element behaves as an in-
line‑level element (templates can only be defined in block‑level or
floated elements).

SlotsSlots

As mentioned above, each string defines one row in the template,
and each character in the string represents a column. These charac-
ters can be one of the following values:

a letter
Any alphabetic character represents a column in the template.
Multiple identical letters in adjacent rows or columns are com-
bined together to form a single slot for content, which spans
those rows and columns.

Introduction to the Template Layout Module

195

@ (‘at’ sign)
It represents the default slot, that is, that in which will be placed
the children elements for which no other slot has been specified.

. (‘period’ sign)
A period creates an empty slot. No content can be positioned in
it, and it is mainly intended to serve for defining gutters (empty
columns that act as a separation among the actual columns of
the grid that defines the template). But it can be used to create
empty areas in the template or to separate any pair of slots,
not just entire columns (or rows). This value would have not
been strictly necessary, since the same effect could have been
achieved with a normal slot (a letter) for which no content were
specified, but it is provided as a convenience, because it helps
reveal its intention, thus making the template more clear and
easily readable.

RoRow Heighw Heightsts

A row definition may have associated a height. It can be an explicit
length or other keywords that define certain constraints for the
height of the row:

<length>
An explicit height for that row. It can be any valid CSS length.
Negative values are not allowed and would make the template
illegal (the declaration would be ignored).

auto

The height of the row is determined by its contents, according
to the algorithm that is described later.

* (asterisk)
All rows with an asterisk have the same height.

Proposed Solution: The CSS3 Template Layout Module

196

CColumn Wolumn Widthsidths

Finally, it is also possible to define the width of each column. If
column widths are present they must go after the last row in the
template definition. They can be any of the following values:

<length>
An explicit width for that column. It can be any valid CSS
length. Negative values are not allowed and would make the
template illegal.

* (asterisk)
All columns with an asterisk have the same width.

max-content

The width of the column is determined by its contents. This
value means that the column tries to expand until fill the width
required to fit its contents without any line break.

min-content

The width of the column is determined by its contents. In this
case, the column will be as narrow as possible to fit its contents
without it overflows.

minmax(p, q)

The width of the column is constrained to be greater than or
equal to p and less than or equal to q, where p and q can be any
of the following values:

[<length> | max-content | min-content | *]

If q is less than p, then q is ignored and minmax(p, q) is treated
as minmax(p, p).

fit-content

It is equivalent to minmax(min-content, max-content).

Template Definition

197

Explanation of Width
Values

The meaning of some of the previous values for the width of the
rows is not clearly specified in the current version of the Working
Draft, and it can only be understood deciphering the algorithm for
computing widths (which is explained later). This is specially no-
torious for the values that let the width of a column be dependent on
its contents: min‑content, max‑content, and fit‑content. For this
reason, their actual meaning is described below in some more detail.

A value of min-content for a column establish a constraint on
that column under which it must be as narrow as possible while be-
ing able to display its content inside, without overflowing. In prac-
tice, this means that it will be as narrow as the wider word or image
of its content. Let be the following example:

<p>This is a

supercalifragilisticexpialidocious paragraph

that contains a very long word.</p>

A column of a template with a min-content width that only contains
a slot with that paragraph should behave as if the paragraph had
been split into words (for example, inserting a br element after each
word) and then floated or inserted in an HTML‑table with just one
cell (and cellspacing and cellpadding equal to zero). What most
implementations do for such cases is shown in figure 2.

On the other hand, max‑content means that the column should
be as wide as the widest line box of the content of slots that span ex-
actly that column (rowspan=1). Again, this can better understood
taken as a reference what current CSS 2.1 implementations do for
floats and tables. In this case, and in the absence of other con-
straints, that column would behave as would do a floated element or
a single‑cell table with the same table, as is shown in figure 3.

Note that if the content generates several line boxes, its maxim-
um width remains unconstrained, and it tries to expand until fill all
the available width.

Finally, if fit-content is applied to a column width, that
column is constrained to be wider than the computed width for
min-content and narrower than that for max-content.

Proposed Solution: The CSS3 Template Layout Module

198

Hello, World!

Bye!

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer et
sapien orci, sed eleifend velit. Suspendisse varius cursus sem, pulvinar
ultrices quam scelerisque ut. Cras sit amet dui mi, non molestie dolor.
Vivamus commodo, quam a rhoncus tincidunt, sapien diam suscipit
neque, a commodo sapien libero in elit. Integer at ultrices justo.

This
is
a
supercalifragilisticexpialidocious
paragraph
that
contains
a
very
long
word.

<p style="float: left;">This
 is
 a

supercalifragilisticexpialidocious

paragraph
 that
 contains
 a

very
 long
 word.
</p>

This
is
a
supercalifragilisticexpialidocious
paragraph
that
contains
a
very
long
word.

<table cellspacing="0" cellpadding="0">

<tr>

<td>

<p>This
 is
 a

supercalifragilisticexpialidocious

paragraph
 that
 contains
 a

very
 long
 word.
</p>

</td>

</tr>

</table>

Figure 2. Most implementations treat equal a floated element and a table of just one cell with the same content.
This figure shows how a paragraph that have been split into words inserting a br after each word is rendered: a)
when it is floated; and b) as a single‑‑cell table. Except for a subtle difference on how borders are being rendered
for the table, both boxes are exactly equal (they have the same dimensions).

Figure 3. When a value of
max‑‑content is set for a
column width, that row tries
to expand horizontally until
all its content can be dis-
played without line breaks.
This behaviour is equivalent
to that of floats or an HTML
table with just one cell.

Template Definition

199

Positioning Content into Slots

Actual content is assigned to
specific slots in the template

by means of the position

property.

Once a template has been defined for an element, we can posi-
tion the contents of that element in any slot of the template. This is
done by means of the position property, already present in CSS
2.1, which now can also receive as a value a letter denoting the name
of one of the slots in the template:

position: <letter> | ‘@’ | same

Below is an explanation of the allowed values:

<letter>
The name of the slot into which the element is to be positioned.
It must be one of the slots of its ancestor template. If no slot
with that name is present, the computed value would be static

(that is, it would behave as it were not positioned).

@ (‘at’ sign)
This usually will not be specified, since it is the default value for
elements that are children of another with a template and for
which no other slot have been specified. In that case, those ele-
ments go into the default slot of the template.

same

A value of same instead of a letter computes to the same letter
as the most recent element with a letter as position that has the
same template ancestor. If there is no such element, the value
computes to static.

Width Algorithm

The algorithm, as currently appears in the specification, is the fol-
lowing:

a) If the element where the template is defined has an a‑priori known
width:

Proposed Solution: The CSS3 Template Layout Module

200

• If the sum of the intrinsic minimum widths of the columns is larger
than the width of the element, each column is set to its intrinsic
minimum width and the contents will overflow.

• If the sum of the intrinsic minimum widths of the columns is less
than or equal to the width of the element, the columns are
widened until the total width is equal to the width of the ele-
ment, as follows: all columns get the same width, except that no
column or span of columns may be wider than its intrinsic pre-
ferred width. If the columns cannot be widened enough, the tem-
plate is left aligned in the content area of the element (assuming
a right to left direction language).

b) If the element does not have an a‑priori width:
• If the sum of the intrinsic minimum widths of the columns is wider

than the initial containing block, each column is set to its intrins-
ic minimum width. The resultant width of the element is the sum
of the widths of the columns.

• If the sum of the intrinsic minimum widths of the columns is less
than or equal to the width of the initial containing block, the
columns are widened until the total width is equal to the initial
containing block, as follows: all columns get the same width, ex-
cept that no column or span of columns may be wider than its
maximum intrinsic width. The resultant width of the element is the
sum of the widths of the columns.

In addition, the rules for calculating intrinsic minimum and in-
trinsic preferred widths are defined as follows:

• A column with a <col-width> of a given <length> has intrinsic min-
imum and intrinsic preferred widths both equal to that <length>.

• A column with a <col-width> of * has an infinite intrinsic preferred
width. Its intrinsic minimum width is 0.

• A column with a <col-width> of min-content has an intrinsic min-
imum width and intrinsic preferred width that are both equal to
the largest of the intrinsic minimum widths of all the slots in that
column:

• The intrinsic minimum width of a . is 0.

Width Algorithm

201

• The intrinsic minimum width of a letter or @ is 0 if that slot spans
two or more columns; otherwise, it is the intrinsic minimum
width as defined by the CSS3 Basic Box Model (Bos, 2007b).

• A column with a <col-width> of max-content has an intrinsic min-
imum width and intrinsic preferred width that are both equal to
the largest of the intrinsic preferred widths of all the slots in that
column:

• The intrinsic preferred width of a . is 0.
• The intrinsic preferred width of a letter or @ is the intrinsic pre-

ferred width as defined by the CSS3 Basic Box Model (Bos,
2007b).

• A column with a <col-width> of minmax(p,q) has an intrinsic min-
imum width equal to p and an intrinsic preferred width equal to q.

ExplanaExplanation of Mtion of Minimum and Pinimum and Prrefeferrerred Ined Intrinsic Wtrinsic Widthsidths

The algorithm above refers to some concepts intended to form part
of the CSS3 Basic Box Model, but that have not yet been defined in
the current version of that working draft (Bos, 2007b): the intrinsic
minimum and intrinsic preferred widths.

They are closely related to the min‑content and max‑content
values that have been defined before for <column‑width> in this mod-
ule.

Thus, the intrinsic minimum width of an element can be defined
as the minimum width it must have to be able to display its contents
without overflowing. In practice, this means that the generated box
of that element will be as wide as the widest word or replaced ele-
ment of its contents. Conversely, the intrinsic preferred width is the
minimum width needed to display its contents without line break-
ing, if possible (that is, if that value is less than the available width
for that element).

The above definitions for both values match those proposed by
Baron (2007), which in turn correspond with the Mozilla exten-
sions -moz-max-content and -moz-min-content1. The meaning of
these width values is depicted on figure 4.

1 https://developer.mozilla.org/en/CSS/width

Proposed Solution: The CSS3 Template Layout Module

202

http://dbaron.org/css/intrinsic/
http://dbaron.org/css/intrinsic/
https://developer.mozilla.org/en/CSS/width
https://developer.mozilla.org/en/CSS/width

Figure 4. The same paragraph as is rendered in Mozilla Firefox when it has not any width set, with a minimum
intrinsic width, and, finally, with a minimum preferred width (using the -moz-min-content and -moz-max-content

Mozilla proprietary extensions of width property).

Height Algorithm

As it has been done for widths, first, it is described the algorithm for
computing heights as it is currently described in the specification.
Then, some clarifications are made, and certain omissions or errors
in the specification are fixed. In addition, a much more detailed al-
gorithm is presented here.

According to the specification, the height of the template is the
smallest possible under the following constraints:

1 Rows with a height set to <length> have that height.
2 No row has a negative height.
3 All rows with a height set to * are the same height.
4 Every sequence of one or more rows of which at least one has a

height set to auto is at least as high as every letter or @ slot that spans
exactly that sequence of rows.

Width Algorithm

203

5 If the computed value of the element’s height is auto, then every se-
quence of one or more rows of which at least one has a height set to
* is at least as high as every letter or @ slot that spans exactly that se-
quence of rows.

6 The whole template is at least as high as the computed value of the
element’s height, unless that value is auto, or unless all rows have a
height set to <length>.

As can be seen, the specification does not provide an actual al-
gorithm for computing heights, but a set of constraints that any im-
plementation of this module must fulfil. Although this is a common
practice in W3C specifications, which usually leaves a great amount
of freedom to implementors for choosing an actual algorithm, I
think that this case is complex enough to deserve a more procedural
description of how the constraints above can be fulfilled.

Moreover, there are certain omissions in the constraints above
that, though obvious, should be explicitly set to avoid future mis-
understandings in the implementations of the module. As Baron
(2003) has stated (talking about the complexity of the layout engine
of Mozilla): “I think some of the people who wrote the code didn’t
understand the specifications that they were implementing. Part of
the problem may lie in the specifications themselves. For example,
there’s almost no information in CSS2 describing shrink wrapping.”

For this reason, a concrete algorithm, written in a more proced-
ural style, is provided below to help understand how all of those
constraints can be achieved in practice.

DDetailed Algorithm fetailed Algorithm for Cor Computing Heighomputing Heightsts

Computing Single‑Row
Slots

A first step of the algorithm for computing the height consists on
calculating the minimum height of every row, considering only the
slots of that row that do not span (rowspan=1). This step must be
only done for rows for which a height value other than a explicit
length have been set in the template definition. That is, only rows
with a defined height of auto or * (asterisk) must be processed in this
first step, since those with an explicit length already have their
height constrained to that value.

Proposed Solution: The CSS3 Template Layout Module

204

Each row with a defined height of auto or * (asterisk) must
be at least as tall as the tallest slot of that row that do not span
(rowspan=1). The height of a slot, for the purpose of this algorithm,
is determined by its contents. Of course, it depends on the width
of the slot, so computing heights must necessarily be done after computing
widths.

The pseudocode for this step is depicted below:

foreach row in template where row.height = 'auto' or

row.height = '*' do

row.computedHeight = 0

foreach slot in row where slot.rowspan = 1 do

if (slot.getContentHeight() > row.computedHeight)

row.computedHeight = slot.getContentHeight()

end_if

end_foreach

end_foreach

Rows of Equal HeightThe Template Layout Module makes very easy to have equal‑height
rows, simply by assigning the selected rows a height of * (asterisk).
The first step of the algorithm did not took this into consideration,
and a minimum computed height was assigned to each row consid-
ering only the height of their slots. Now these rows must be tra-
versed again, assigning to all of them a height equal to the largest of
the minimum heights computed in the previous stage.

This is the second step of the algorithm:

var height = 0

foreach row in template where row.height = '*' do

if (row.computedHeight > height)

height = row.computedHeight

end_if

end_foreach

foreach row in template where row.height = '*' do

row.computedHeight = height

end_foreach

Height Algorithm

205

Figure 5. When a multi‑‑row
slot is shorter than the sum of

the height of the rows it
spans, it does not affect the

overall algorithm for comput-
ing heights.

Computing Multi‑Row
Slots

The next step consists on computing the slots that spans several
rows. Depending on the scenario, they may or not influence the
computed height for rows calculated in the previous steps. Thus, let
be the following template:

"aab" /auto

"cdb" /auto

And now let us suppose we have the scenario shown in figure 5
(where the slots have a height that only depends on their contents,
since the algorithm for computing heights has not yet finished). In
that figure the height of the slot b is less than the sum of the com-
puted height of the rows it spans, which have been calculated in the
two previous steps of the algorithm, so that slot is not affecting the
computed height of those rows, and we will just have to “lengthen”
it in a next stage of the algorithm until it is as tall as the sum of its
spanned rows.

But, what does it happen when the contents of the slot that
spans several rows are taller than the sum of the previously com-
puted heights for the rows it spans? In that case, we need to increase
the height of such rows —those that have a height of auto or *—
until the sum of all of them is equal to the height of the slot with
rowspan > 1. The specification does not stipulate how this must be
done. Indeed, it even does not states that the the height of a slot that
spans several rows must be equal to the sum of those rows. This is

Proposed Solution: The CSS3 Template Layout Module

206

something that should be stated in the specification, since it is clear
that otherwise it could led to situations like the one shown in figure
5: it might seem obvious, but the specification should state that slots
must have the same height that the row to which they belong (or the sum of
the rows they span).

Anyway, as to the case under discussion, that is, when the height
of the spanned row is larger that the sum of the computed heights
of the rows it spans, the lack of precision should not be considered
an error of the specification: it is frequent in CSS specification that
some concrete procedures are up to the implementors, who are free
to choose different algorithms, as long as they fulfil the require-
ments for such specific parts of the specification. This is what hap-
pens, for example, with algorithms of tables.

In this case, two are the more obvious approaches to solve this
issue while still preserving the constraints above:

Distribute the excess of height among all the involved rows
This would led to a more balanced design. The problem is: how
should that length be distributed among those rows? One possib-
ility would be to do it proportionally to their height. But, what
height? The computed one? Or that specified in the template defin-
ition for that row? In the latter case, how should heights of auto and
* be treated?

Simply expand one of the rows
A simpler approach could be just expanding one of the rows (for
example, the last one), assigning to it all the difference between
the height of the multi‑row slot and the sum of the height of the
spanned rows. This alternative is not without problems, though, be-
cause, what does it happen if such row is one of those with a defined
height of *? If there are more equal‑height rows among those which
the slot spans, assigning all the excess of height to one of them
would affect the others, which would see their height increased in
the next step of the algorithm, and thus the multi‑row slot should be
enlarged to be as tall as the sum of the spanned rows. This could led,
therefore, to situations like the one shown in figure 6.

Height Algorithm

207

A multi‑row slot (b)

is taller than the
sum of the height
of the three rows it
spans. Note that
first and second
rows have a
defined height of *
(asterisk), which
means that they
must have the
same height,
whatever their con-
tent.

The second step of
the algorithm for
distributing the ex-
cess of height if an
implementation de-
cided just to en-
large the last row
until the sum of all
the involved rows
is as tall as the slot
that spans that
number of rows. At
this moment, it is
violating the con-
straint of
equal‑height rows

(those with a
defined height of *).

A subsequent itera-
tion should ad-
dress the violation
of the constraint on
equal‑height rows,

ensuring that the
rest of rows with a
defined height of *
are enlarged until
all them are of the
same height.

The final result,
once assigned the
same height to
every row with as-
terisk. Although it
fulfils all the con-
straints of the spe-
cification, the lay-
out is less than
ideal, since there
are large unneces-
sary areas of
whitespace.

Figure 6. The figure depicts the process of computing height for slots that span several rows, assuming that: a) the
height of the slot is larger than the sum of computed heights of the rows it spans; b) an strategy consisting on as-
signing all the excess of height to the last row it is being used; and c) that row has a defined height of *, and there
are other equal‑‑height rows involved.

Proposed Solution: The CSS3 Template Layout Module

208

The naive alternative of
simply assigning the excess of
height to the last of the rows
that a slot spans, though ful-
fils the constraints for com-
puting height, may led to very
unbalanced layouts with large
areas of unnecessary
whitespace, when there are
equal‑‑height involved. A
much better alternative
would be distributing the ex-
cess of height proportionally
among all the spanned rows.

As it can be seen, assigning the excess of height (between the
multi‑row slot and the sum of the computed height of the rows it
spans) to the last row is a less than ideal solution when that row is
one with a defined height of asterisk and there are other
equal‑height rows among those over which the slot spans. In that
scenario, we may end up with very large areas of unneeded vertical
whitespace.

For that reason, and despite that solution fulfils all the con-
straints that have been set in this proposal, implementors are en-
couraged to choose an algorithm that distributes that excess of
height proportionally among all the rows that the slot span. Since it is
not possible to mix very different types of height that the specifica-
tion allows (auto, * and an explicit length), it is necessary to normal-
ise the heights first. The more obvious approach is to use the com-
puted height of the rows, which has been calculated in the previous
steps of the algorithm. The description of the algorithm would be,
therefore, as follows:

First, it must distinguish between two cases:

1 If the height of the multi‑row slot is less or equal than the sum of the
computed height of the rows it spans

2 If the slot is taller than the sum of the computed height of the rows
it spans

First, the height of all the rows that the slot span is normalised to
the computed height that has been calculated in the preceding steps
of the general algorithm. Then, the excess of height between the
multi‑row slot and the rows it spans is distributed proportionally to
the computed value of each row. Note that, since equal‑height rows
—those that have a defined height of asterisk— have been already
processed in the previous step, all of them are guaranteed to re-
ceive the same amount of length now, thus preserving the constraint
that they must have the same height without the need of any special
treatment for them.

To understand how the algorithm above works, let us consider
a concrete example. Let be the following template, where the slot b

Height Algorithm

209

Figure 7. When the multi‑‑row slot is shorter than the sum of the heights of the spanned rows computed in the pre-
vious steps of the algorithm, it does not affect the height of those rows, and this step of the algorithm just have to
enlarge it until it has the same height than its spanned rows.

spans the three rows of the template, which have a height value of *,
auto, and *, respectively:

display: "ab" /*

"cb" /auto

"db" /*

If the height of the contents of the slot b is smaller than the sum of
the computed heights of the three rows that has been calculated so
far in the preceding steps of the algorithm, it would not affect the
height of its rows. All the algorithm has to do is enlarge the slot b
until it is as tall as the sum of the height of all the rows it spans. Let
us assume that the computed height of the rows is 2 cm, 3 cm, and
2 cm, respectively, and that the contents of the slot b are just 4 cm.
That scenario is depicted in figure 7. The negative -3 cm means the
difference between the height of the contents of the multi‑row slot
(b) and the sum of the computed height of the the rows it spans. All
what must be done in this case is just enlarge the spanned slot until
it has a height of 7 cm (2 + 3 + 2).

A slightly more complex scenario occurs when the height of the
multi‑row slot exceeds that of the rows it spans. In this case, the al-
gorithm distributes that excess of height among the involved rows,
proportionally to their computed height. This scenario is shown in

Proposed Solution: The CSS3 Template Layout Module

210

Figure 8. When the multi‑‑row slot is larger than the rows it spans, the algorithm distribute that excess of height
among all the spanned rows, proportionally to the computed height that has been calculated for each row in the
previous steps of the algorithm.

figure 8, where the first and third row have a previously computed
height of 2 cm (they have a defined height of *), and the second one
has a height of 3 cm, given by the contents of the slot c. If the con-
tents of the multi‑row slot have a height of 10.5 cm, there is an ex-
cess of height of 3.5 cm, which must be distributed as follows:

• First and third rows receive an extra height of 2 × 3.5 / 7 = 1 cm
• Second row receives an extra height of 3 × 3.5 / 7 = 1.5 cm

As can be seen, the result is much more balanced than that obtained
with the alternative of assigning the excess of height to the last row,
which was shown in figure 6.

Processing again
Equal‑Height Rows

After computing the height of multi‑row slots, it is necessary to
repeat the third step of the overall algorithm, since in this process
might have been affected rows with a defined height of *, as it was
demonstrated in the last subsection. However, there is no need to
perform any additional procedure, but just repeating the same step
that was made before for rows of equal height.

Setting the Height of SlotsSo far, we have computed the height of every row, but a final
step must yet be done: it is necessary to assign to every single slot

Height Algorithm

211

(those that do not span more than one row) the height of its row.
The algorithm is as simple as follows:

for each slot in template do

if (slot.rowspan = 1)

slot.height = slot.row.getComputedHeight()

end_if

end_foreach

Overall Algorithm To conclude this section, the overall algorithm for computing slots
is shown:

1 Normalise the height of the rows
2 Compute the minimum height of each row
3 Compute equal height rows
4 Compute multi row slots
5 Compute equal height rows (again)
6 Set the height of each single row slot to fit that of its row

Slot Pseudoelement

It has been shown how we can create templates and position ele-
ments into the slots they define. But, in order to achieve the pursued
separation between presentation and content, there still is a use case
that has not been addressed, namely, the ability to apply styles to
the slot themselves.

A ::slot() pseudo‑‑element
adds the possibility to refer
specific slots from the style

sheet to apply style to them.

Although missing in the first drafts of the specification, this fea-
ture was added to the version of 9 August 2007 (), where a
pseudo‑element slot was introduced to refer to single slots inside a
style sheet. This is the syntax for such pseudo‑element, as currently
appears in the specification:

::slot(letter | @)

The slot pseudo‑element selects the slot of the specified name. If
the subject of the selector is not a template element, or if, being a
template element, it has not such slot, the pseudo‑element selects
nothing (it still is a legal selector, though; it simply does not select
anything).

Proposed Solution: The CSS3 Template Layout Module

212

http://www.w3.org/TR/2007/WD-css3-layout-20070809/

This is an example of use of such pseudo‑element, which sets
a background colour to one slot of the following template and
changes the vertical alignment of other two slots:

#content {

display: "aab"

"cdb";

}

#content::slot(b) { background: rgb(66, 52, 49); }

#content::slot(c),

#content::slot(d) { vertical‑align: bottom; }

Currently, only a few CSS properties are allowed for the slot

pseudo‑element:

• All background properties (to set a background image or colour to
the slot)

• The vertical‑align property
• The overflow property

The question about why are these the only properties allowed for
applying style to slots is discussed in the subsection of the same
name on page 217.

Vertical Alignment

The vertical‑align property of a ::slot() pseudo‑element can be
used to align elements vertically in a slot. The effect is as if the hy-
pothetical anonymous block that contains the contents of the slot is
positioned as follows:

bottom

The content of the slot is aligned to the bottom: the bottom
margin edge of the anonymous block coincides with the bottom
of the slot.

Slot Pseudoelement

213

middle

The content of the slot is vertically centered in the slot: the dis-
tance between the top margin edge of the anonymous block and
the top of the slot is equal to the distance between the bottom
margin edge of the anonymous block and the bottom of the slot.
If the content overflows the slot, it will overflow both at the top and
at the bottom.

baseline

The anonymous block that encloses the content is placed as
high as possible under two constraints:

• The top margin edge of the anonymous block may not be higher
than the top edge of the slot.

• The topmost baseline in the content may not be higher than the
topmost baseline of content in any other slot in the same row
that also has vertical-align: baseline. Baselines of content
inside floats are not taken into account. Slots that span several
rows are considered to occur in their topmost row.

For all other values, the content is top aligned: the top margin edge
of the anonymous box coincides with the top edge of the slot.

Discussion

Previous sections in this chapter have been written in a style as dir-
ect as has been possible, with little room for comments and opin-
ions, since they were aimed to reflect the current state of the spe-
cification in a descriptive manner. Despite some parts have been dis-
cussed in more detail than they are in the specification, as for the
algorithm for computing heights, they did not represent changes
to the specification, but mere clarifications of certain aspects that
might be confusing.

In the following subsections, though, the approach is different:
once the syntax and behaviour of the Template Layout Module
have been described, I will present some other, in my opinion desir-
able, features, that I have proposed but have not been yet accepted

Proposed Solution: The CSS3 Template Layout Module

214

by the Working Group to be included in the specification, explain-
ing their rationale.

AltAlternaernativtive Se Synyntaxtaxeses

The proposed syntax for defining the template has been somewhat
controversial. No doubt, it may sounds strange the first time an au-
thor sees it, since there is no other property in CSS 2.1 that takes a
similar value. However, the ASCII matrix provides, in our opinion, a
simple manner of defining the template at a single place. Moreover,
it is easy to understand the template as a whole just looking at the
ASCII matrix: how many rows and columns it has, which slots it
defines, as well as the rows and columns they spans, and the row
heights and column width.

Of course, other syntaxes were considered while writing the first
versions of the draft. Thus, another possibility would have been to
introduce, for example, two new properties like rows and columns

that take an integer as a value, indicating the number of rows and
columns, respectively, of the template. But then it would be ne-
cessary to have a way to specify what slots the template contains,
the rows and columns they span, the width and height of every
column and row, respectively, etcetera. All of this information is
now provided in a single property instead, which in addition is easily
human‑readable.

DDefault Wefault Widths and Heighidths and Heightsts

The default value of row
heights has changed to auto

instead of *.

Previous versions of the Working Draft set * (asterisk) as the de-
fault value for both row heights and column widths. This means
that, by default, all rows would have the same height and all columns
would have the same width. While for columns this might be an ap-
propriate default width, I had clear that it would be much better if
the default value for row heights were auto.

Thus, heights would always be tall enough to accommodate
their content, which is the most common situation in any real web
page. This has been corrected in the last version of the specification.

Discussion

215

UUsing Psing Pererccenentages ftages for Cor Column Wolumn Widthsidths

At this moment, the Template Layout Module does not allow to use
percentages for the width of columns. This is because it could led to
inconsistencies if the sum of column widths expressed in percent-
ages were greater than one hundred per cent. But HTML tables also
suffer the same issues and it is yet possible to set the width of their
cells in CSS with percentages (Bos et al. 2009, §17.5.2.2):

A percentage value for a column width is relative to the table width. If
the table has width: auto, a percentage represents a constraint on the
column’s width, which a UA should try to satisfy. (Obviously, this is not
always possible: if the column’s width is 110%, the constraint cannot be
satisfied.)

Nothing prevent us from adopting the same behaviour for templates
as browser vendors implement in their table‑layout algorithms
when percentages appear mixed with lengths, or if the sum of per-
centage widths exceed one hundred per cent.

Although the module is inspired in the more powerful mechan-
ism of grid systems, most of which are based on equal‑width columns,
not all people who create web sites are graphic designers nor are
aware of such design tool, while percentages are a very common
value used in the layout of many web sites, specially for liquid
designs (those that adapt their proportions to the width of the
browser window). It is true that percentages can currently be simu-
lated by the Template Layout Module. For example, a three‑column
layout of 20%, 50%, and 30%, respectively, would be as follows:

display: "aabbbbbccc";

But not every combination is possible (unless we use an enormous
amount of columns to get widths like 12%, 30%, and 68%). And
obtaining layouts that combine both proportional and fixed length
columns is difficult and even more unpredictable than what we are
trying to avoid by prohibiting percentages. For example, what is
supposed to happen in the following case?

Proposed Solution: The CSS3 Template Layout Module

216

http://www.w3.org/TR/CSS2/tables.html#auto-table-layout

display: "aabbbbbccc"

15em * 2em;

For all the above, I advocates for the inclusion of percentages as
a legal value for being used in the Template Layout Module for
column widths. My proposal for allowing percentages for column
widths is as follows:

• If the template element has an explicit width (that is, other than
auto, percentages are relative to that width)

• Otherwise, percentages are relative to the maximum available
width, that is, the width of the container element

StStyling the Slots Tyling the Slots Themselvhemselveses

This was one of the first things I missed when the first version of
our prototype, ALMcss, was being developed. In order to debug
the layouts created with it, I tried to use a very rudimentary yet com-
mon technique for debugging CSS: adding a border to the slots gen-
erated by the tool —actually, absolute positioned divs— to reveal
the underlying template (how many slots were generated, in what
position, their actual dimensions, and so on). It was then when I
realised that we had forgotten to include such ability in the specific-
ation: in that version of the Advanced Layout Module (Bos, 2005),
there was not possible to select a slot from the style sheet to apply
some style to it, and so did I tell it to Bert Bos in my first F2F meet-
ing as a member of the W3C CSS Working Group, hold during the
W3C 2006 Technical Plenary at Mandelieu-La-Napoule. I also pro-
posed it later in a document sent to the Working Group mailing list
(w3c-css-wg@w3.org) on 2 June 2006, where I argued why I though
this feature was not only desirable, but essential in order to achieve
a true separation between presentation and content.

Equal‑height ColumnsIn that document, I stated that a simple layout like that of figure
9 could not be achieved with the Template Layout Module unless
we could apply a background colour to the slot itself. As it has been
shown in previous chapters, one of the major limitations of CSS is
its inability to get equal‑height columns, so this type of layouts,
where columns have a background colour which extends all the way

Discussion

217

http://www.w3.org/TR/2005/WD-css3-layout-20051215/

Figure 9. A requirement of
the Template Layout Module

is to get rid of those extra,
non‑‑structural divs that are

added to the markup just for
styling purposes, such as ap-
plying a background colour
to an entire column, or set-

ting some padding for the
contents of a column without

affecting the layout. Some-
times those divs already exist
in the markup, but many oth-
ers they have to be artificially

added.

down the page, are usually made using the technique known as Faux
Columns (Cederholm, 2004), using a background colour or a tiled
image. In this example, Cederholm (2008, p. 258) is using an evol-
ution of his own technique, known as Sliding Faux columns (Bow-
man, 2004, Meyer, 2004b), where the tiled image “can slide around
behind fluid‑width columns, thus creating the equal‑height effect
while remaining flexible” (Cederholm, 2008, p. 226). This is neces-
sary because the columns of that design are 70% and 30% in width,
respectively.

The basis of all this variations of the faux‑columns technique
consists of applying the background image or colour to the contain-
er of both columns.

But one of the major requirements of Template Layout Module
is that it must avoid —or, at least, minimise— the need for such
extra divs when they are not required by the structure of the con-
tent. Let us suppose that the rounded boxes that appear in the right
column come from several places in the source code of the page. For

Proposed Solution: The CSS3 Template Layout Module

218

example, let us suppose that the markup for this design were that of
figure 10.

In that case, the content of the right sidebar is not sequential
and enclosed in a common container, but mixed in different pos-
itions with the rest of the content of the document. That layout,
which is no longer possible in CSS2, could have been still done
with the Template Layout Module using a code like that shown in
the right column of the same figure. Since we have removed all the
non‑structural containers from the original markup, we need to be
able to specify a background colour or image to the slot c (the side-
bar).

My proposal was accepted and the pseudo‑element slot() that
has been described previously in this chapter (see p.) was intro-
duced in the following version of the working draft (Bos, 2007a,
§3.10). So for the background colour of the sidebar in the previous
example we could have just done:

body::slot(c) {

background-color: #D5D6BE;

}

What Properties Must Be
Allowed?

Nevertheless, at this moment there is no consensus in the Working
Group about what CSS properties must be allowed inside slot()

pseudo‑elements. In my opinion, limiting them to just background
properties, vertical‑align, and overflow is too restrictive.

For example, another common problem of current
multi‑column layouts with CSS is setting the horizontal separation
(gutters) among columns when they are expressed in different units
than those of the columns. Thus, the example used in this section
sets the width of both columns in percentages, to 70% and 30%, re-
spectively. What does it happen if we want a horizontal separation
between columns of, for instance, 1 em, or 20 pixels? This is an issue
in CSS2, which does not allow to use expressions for width values,
as for example: width: 70% - 1em. In a case like this we have the
following options (Cederholm, 2008, p. 218):

• Use a percentage for padding as well, and subtract that value from
the declared width of the column.

Discussion

219

Structure of the content (HTML) Template‑‑based layout (CSS)

<body>

<h1>Bulletproof Pretzel Company</h1>

<ul id="menu">...

<div id="what">

<h2>What Are Pretzels?</h2>

<p>...</p>

</div>

<div id="history">

<h2>Our Company History</h2>

<p>...</p>

<h3>Where it all began</h3>

<p>...</p>

</div>

<div id="store">

<h2>Our Pretzels</h2>

...

</div>

<div id="about">

<h2>About Us</h2>

...

</div>

</body>

body {

display: "aaaaaaaaa" /auto

"bbbbbbccc" /auto

"ddddddddd" /auto;

}

h1, #menu {

position: a;

}

#history {

position: b;

}

#what, #store, #about {

position: c;

}

Figure 10. A possible content structure for the Bulletproof Pretzel Company example.

• Apply padding to elements inside the columns only.
• Add an additional div to separately assign padding using any value

we wish.

The second method consists of applying the padding individually to
direct children of the columns:

#content > *, #sidebar > * {

padding-left: 1em;

Proposed Solution: The CSS3 Template Layout Module

220

padding-right: 1em;

}

But it is usually not so easy, either, specially with em values, because
unless every children has the same font size the computed values of
their paddings will be different, and it would be necessary to calcu-
late the right em value for each element based on its font size.

Since that calculations might be cumbersome, in practice is very
common the third solution of those enumerated above: adding an
extra div inside each column:

<div id="sidebar">

<div>

...

</div>

</div>

Now, any padding value can be applied to that inner div without af-
fecting the width of the column:

#sidebar {

float: right;

width: 30%;

}

#sidebar > div {

padding-left: 1em;

padding-right: 1em;

}

But this sort of things are those that we are trying to avoid with
the Template Layout Module. In our example, this could have been
achieved as follows:

body {

display: "aaaaaaaaa" /auto

"bbbbbbccc" /auto

"ddddddddd" /auto;

}

Discussion

221

body::slot(c) {

padding-left: 1em;

padding-right: 1em;

}

Note that the template definition could be easier if, as I stated in the
previous subsection, percentages for column widths were allowed:

body {

display: "aa" /auto

"bc" /auto

"dd" /auto

70% 30%;

}

But currently this is not possible using the Template Layout Mod-
ule since it does not allow the use of padding properties with the
slot() pseudo‑element. It can be argued that this is because, as it
has been stated in this chapter, it is more oriented toward grid sys-
tems, which are based on equal‑width columns with a fixed separa-
tion (gutter) among them. In a grid‑based layout, therefore, the hori-
zontal separation among columns is supposed to be achieved using
the empty slot (“.”). Thus, the following template would led to the
layout shown on figure 11.

body {

width: 900px;

display: ".a.a.a." /auto

".b.b.c." /auto

".d.e.c." /auto

1em * 1em * 1em * 1em;

}

But, as I have already stated, for most users I think that the use of
padding is more intuitive. Moreover, strictly speaking, what we get
by using empty columns as gutters are more close to margins than
to paddings. And, although only horizontal spacing has been con-
sidered so far, there also is the same issue with vertical spacing.

Proposed Solution: The CSS3 Template Layout Module

222

Figure 11. Template Layout
Module allows mixing pro-
portional columns widths
with fixed separations among
them (gutters), something
typical in grid systems in
which it is inspired. Never-
theless, I still think that pad-
ding and other properties
should be allowed for slot()
pseudo‑‑elements, since it is
what authors are used to. I do
not see any reason why we
should treat slots different in
that sense than, for instance,
table cells, which can be
styled normally in CSS2.

And there are other properties that I would like to be allowed
too. For example, authors usually specify the font family and size
based on the placement of elements. Thus, the font size of a sidebar,
for instance, is often smaller than that of the main content, different
colours are sometimes applies to its headers, etcetera. I do not see
any reason why these properties should be prohibited in the slot()

pseudo‑element.
As a conclusion, my proposal is allow most CSS properties in-

side the slot() pseudo‑element, with the only possible exceptions
of:

• float

• margin and margin‑ related properties

Non‑rNon‑recectangular Slotstangular Slots

Currently, the Template Layout Module does not allow non‑rect-
angular slots for content. This is a restriction inherited from the cur-

Discussion

223

rent CSS box model, which prevent non‑rectangular boxes. But we
should at least consider if such constraint must be still valid.

For example, by removing it, it would be very easy to get a
design like that shown on a previous chapter (see figure 10 on page
147) and obtain something similar to what is possible with floats,
but where is the box itself (the slot) and not just its contents, what
flow around another slot, thus getting a “L”‑shape:

display: "ab"

"bb";

I proposed to remove this constraint in the CSS‑WG F2F meeting
at CWI (Amsterdam, May 9-11, 2006), where I illustrated it with
the example cited above. Then, an interesting debate followed, in
which several scenarios of non‑rectangular layouts were depicted on
the whiteboard. Following there is a brief extract of the minutes that
reflects that discussion, though very condensed by the scriber (“C”
it is me):

C:“demo. 3 column layout”

MM:“Meta issue: What is the flow model in advanced layout (can you
flow content from one box into another). Can this be non square (like
an L‑shape layout)”

SZ:“Quick proposal: Define incursions anchored on 4 corners.”

SZ:“in a 9 grid scenario you can have an object in the middle and flow
around…”

Figures 12 and 13 show the two scenarios depicted by Steve Zilles
which are mentioned in the minutes above.

The problem of removing this constraint and allowing non‑rect-
angular slots, as was shown by several members of the Working
Group in that meeting, is that it can led to layouts where it would be
difficult to standardise how the content must flow. That is the case,
for instance, of the layout shown in figure 13. Which direction must
follow the content of the slot a? From left to right? From top to bot-

Proposed Solution: The CSS3 Template Layout Module

224

Figure 12. An example of
non‑‑rectangular slot (a),
sketched by Steve Zilles at the
F2F meeting of the CSS
Working Group at CWI (Am-
sterdam, May 9-11, 2006),
during the interesting discus-
sion which followed to my
proposal of removing from
the Template Layout Module
the constraint that forbids
non‑‑rectangular slots. The
figure shows incursions (in
this case, empty spaces, but
they could have been normal
slots) anchored on the four
corners of the layout.

Figure 13. The second ex-
ample is also from Steve
Zilles, during the same meet-
ing. In this case, a more com-
plex scenario is shown, in
which there is a slot (b) in the
middle of the 3 × 3 grid, and
the rest of the content (slot
a) flows both horizontally
and vertically around it.

Discussion

225

tom? Both? In my opinion, this should not be an insurmountable
problem, as long as CSS3 also plans to introduce a multi‑column
module, of which this could be thought a particular case. But I agree
that these scenarios may be out of the scope of the Template Layout
Module, at least in this initial stage of its existence, and it is probably
better not to make it very complex at this moment, both for authors
and for implementors.

However, I still think that this feature could be interesting for
getting simpler layouts that are not, however, currently possible
with CSS2, like the one that opened this subsection, so I propose
the following intermediate approach: to remove the constraint that
prevent non‑rectangular slots, replacing it by this other constraint:
the characters (letters, @, or .) of a slot must be adjacent.

Proposed Solution: The CSS3 Template Layout Module

226

Demonstration:
Case Studies
Revisited
This chapter is aimed to demonstrate the benefits of
the proposed solution, and how it gives a step forward
towards a true separation between presentation and
content on the web, and, more specifically, between the
structure of the document and its final visual layout.

The approach followed for such demonstration
consists on taking the case studies that have been done
on Chapter 7 using the current layout capabilities of
CSS and redoing them, but this time using the
template-based advanced layout mechanism proposed
on Chapter 9.

10

Introduction

One of the benefits of the CSS3 Template Layout Module is, as this
chapter will reveal, how easy it is to specify the layout of a page or
a specific element with it, specially when compared with how the
same layout would have been done with the current CSS 2.1 mech-
anisms reviewed in chapters 5 and 6, to wit: floats, negative margins,
and relative and absolute positioning. To proof this statement, the
case studies that were done on Chapter 7 with CSS will be revisited,
now laying them out using the aforementioned template-based lay-
out mechanism proposed in this thesis.

But, whereas the simplicity is one of the major advantages of
the Template Layout Module, where it really stands out is when it
comes to redesign. Therefore, this chapter also undertakes a com-
plete redesign of a real website, first briefly explaining how it could
have done in CSS —actually, why it is not possible to be done
without altering the order of the content and the structure of the
markup— and then illustrating how it would be with the proposed
layout extension.

Blog Entries

This section will show how with the same HTML structure for a
blog entry that was outlined in p. 133 (and is more detailed below),
it is possible to do any of the layouts that were seen in the blogs re-
viewed on Chapter 7. This is the HTML that I am going to use for
all the examples (although some new elements that are not contem-
plated here may appear in some of the examples).

<div class="entry">

<h1>Lorem Ipsum</h1> <!-- Title of the post -->

<ul class="meta">

<li class="date">

11 <abbr title="December">Dec</abbr> 2009

<li class="categories"> ...

Demonstration: Case Studies Revisited

228

<li class="tags"> ...

<li class="num-comments"> ...

...

<div class="content">

...

</div>

<div class="comments">

...

</div>

</div>

Let us suppose that we want the date of the post to appear above
the title of that entry. As we know, this is only possible in CSS using
absolute positioning and leaving room for the the date with either
a padding-top for the #entry div or a margin-top for the h1, de-
pending on each specific case. This may lead to the already men-
tioned problems of absolute positioning, which can be summarised
saying that as soon as the font size or the browser window dimen-
sions change, the absolute positioned date might overlap the con-
tent below it.

Instead, this could have been solved with the Template Layout
Module, using a template like the following for blog entries:

.entry {

display: "a"

"@";

}

And then indicating the position for the date with just this single
property:

.entry .date { position: a; }

Every other information contained in the blog entry (title, other
metadata, comments, the content itself, etcetera) would be placed
below it, in the default slot defined by ‘@’. Since the height of the
rows is not defined, it will be equal to its default value, auto, and

Blog Entries

229

therefore the rows will automatically adapt to the height of their
contents, whatever they be, under any circumstance.

Despite for this example a very simple template like the above
suffices, nothing keep us from doing more complex variations over
the content order. In fact, the design of any of the blogs reviewed on
Chapter 7 could have been achieved without changing the previously
outlined HTML for blog entries.

ZZeldmaneldman

Thus, for Jeffrey Zeldman’s blog (see p. 134), a template like this
could have been defined:

#entry {

display: "a"

"@"

"b"

"c";

}

.entry .date { position: a; }

.entry .categories { position: b; }

.entry .comments { position: c; }

StuffandnonsenseStuffandnonsense

The entries of the Andy Clarke’s blog (see p. 135) at his design
agency would be laid out as:

.entry {

display: "@@"

"aa"

"bb"

"cc"

"de"

61% 39%;

}

.meta { position: a; }

#promo-workshop { position: b; }

Demonstration: Case Studies Revisited

230

.section h2 { position: c; }

.comments { position: d; }

.archive { position: e; }

Unless other slot is specified, all the entry content goes into the de-
fault slot, located at the top of the page. That includes the title (h1).
The metadata of the entry (for which Clarke is using an entry-meta

class and here it is represented by meta) would go below the entry,
regardless of its position in the source document. Below, it is the
announcement of a workshop. Comments and “From the archives”
sections are situated at the bottom of the page.

Finally, as it can be seen in figure 2 of page 135, the main con-
tent of the blog entry is narrower than the information that is below
it. Specifically, in Clarke’s original web site it is set a width of 55%.
This could have been done adding two more empty columns at both
sides of “@” and “a” slots:

.entry {

display: ".@."

".a."

"bbb"

"ccc"

/* What should be here? */

* 55% *;

}

But there is a problem in the template above: how should be defined
the row for the entry comments and the archive section? A simple
solution like "dde" would not work, because Clarke has defined
those sections as follows:

/* This is the class of the “replies” section */

.article {

position: relative;

float: left;

width: 57%;

padding-right: 4%;

Blog Entries

231

border-right: 2px solid #e6e6e6;

}

That gives as a result that the comments section has a width of 61%
(actually, 61% plus 2 pixels corresponding to its right border), and
therefore the adjacent archive section will have 39%. But those val-
ues are in conflict with the previously defined width of 55% for the
central column (distributing proportionally the rest between the left
and right columns).

There are two possible solutions for this (none of them are
currently allowed in the Template Layout Module Working Draft,
though):

Using a nested template
A nested template could have been defined for comments and
archive. But, although this feature is allowed in the current working
draft, there is no guarantee that we always have an appropriate
HTML element where the nested template can be defined, which
would break again the separation between structure and layout (if
a new element had to be added just for acting as a container of the
two sections).

This would have been easily solved, though, if we remove the
constraint that limit the properties that can be applied to slot

pseudo-elements. By doing so, the following code could have been
used for this example:

.entry {

display: ".@."

".a."

"bbb"

"ccc"

"ddd"

* 55% *;

}

.entry::slot(d) {

template: "ef"

Demonstration: Case Studies Revisited

232

61% 39%;

}

Using paddings
The other option would be, using the first suggested template,
simply to define a padding for the narrower parts of the entry (again,
the same mentioned constraint should be removed from the spe-
cification for this to be possible):

.entry::slot(@), .entry::slot(a) {

padding-left: 22.5%;

padding-right: 22.5%;

}

MeyMeyererwwebeb

As for Eric Meyer’s entries (see p. 136), the following template
would do the work:

.entry {

display: ".a"

"bc"

"dd"

10em max-content;

}

.entry h1 { position: a; }

.entry .meta { position: b; }

.entry .content { position: c; }

.entry .comments { position: d; }

Mark BMark Boultoultonon

The layout of Mark Boulton’s entries (see p. 137) could have been
easily done with the following simple template:

.entry {

display: "a"

"@";

}

Blog Entries

233

.date { position: a; }

StStopdesignopdesign

Douglas Bownman’s posts (see p. 138) have the following layout:

.entry {

display: "aa"

"dc"

14em max-content;

}

.entry h1 { position: a; }

.entry .meta { position: d; }

.entry .content { position: c; }

Jason SJason Sananta Mariata Maria

The Jason Santa Maria’s blog entry showed in 139) is the most com-
plex of the reviewed ones. However, it is very easy to recreate its lay-
out with the Template Layout Module without any changes to my
original HTML for a blog post:

.entry {

display: "aaaaaaaaa"

".bcccccde"

"ffggggggg"

".hiiiiijk"

"mmmmmmmmm"

90px;

}

.entry h1 { position: a; }

.entry .num-comments { position: b; }

.entry .categories { position: c; }

.entry .prev { position: d; }

.entry .next { position: e; }

.entry .tags { position: i; }

.entry .comments { position: m; }

Demonstration: Case Studies Revisited

234

News

Similarly to blog entries, news articles in a newspaper may have a
plethora of different layouts: sometimes the summary of the news
article is below the headline, others over it; some articles have an as-
sociate photography and others have not, and, for those with a pho-
tography, this can adopt infinitude of sizes and positions within the
article. However, as it happened with blog posts, it is clear that all
news articles should have the same HTML, regardless of the layout
of each single piece of news.

Let us use the following HTML for representing a news article:

<div class="news">

<h2>This is the Headline</h2>

<p class="summary">

... <!-- The summary goes here -->

</p>

<div class="main-picture">

<p class="caption"> ... </p>

</div>

<div class="content">

... <!-- Content goes here -->

</div>

</div">

How could be laid out, for instance, the news that appears on the
National Post page shown in 143? Although any change in the po-
sition of the headline, summary, and main picture is very easy to
achieve with the Template Layout Module, those news constitute
a good example that, in its current form, it is not yet a solution
for some layouts, and that my proposal of allowing non-rectangular
slots has sense.

Thus, assuming that non-rectangular slots were possible, the
layout of the main news article of that page could have been done as
follows:

Blog Entries

235

#news1 {

display: "aaaaaa"

"bbbbbb"

"cddddc"

"cccccc"

"cceecc";

}

#news1 .headline { position: b; }

#news1 .summary { position: b; }

#news1 .main-picture { position: d; }

#news1 .content { position: c; }

#news1 .content .picture { position: e; }

/* This property does not form part of the Template

Layout Module: it is defined in the CSS3

Multi-column Module. */

#news1 .content {

column-count: 6;

}

The news article “American museun…” of the same page would use
the following template:

#news2 {

display: "aaaa"

"bccc"

"cccc"

"ccdd";

}

#news2 .headline { position: a; }

#news2 .summary { position: b; }

#news2 .main-picture { position: d; }

#news2 .content { position: c; }

#news2 .content { column-count: 4; }

Demonstration: Case Studies Revisited

236

Master in Web Engineering

The website of the Master in Web Engineering at University of
Oviedo that was shown in the figure of 146 is also an example of
how non-rectangular slots could serve for certain layouts, as it was
explained during the review of such case study.

However, I will ignore here such discussion and concentrate
only on doing the whole layout of that website using the Template
Layout Module; it would be as follows:

body {

display: "aaaaaa"

"bbbbbb"

".ccc.d"

".e.f.d"

15px 240px 15px max-content 15px

185px;

}

The template above would be enough for defining the layout of
that web site. It is not only much less code than it is needed using
floats or absolute positioning, but the really important thing is that
it is totally independent on the order of the document source code.
Content may be represented in the markup attending only to their
logical structure, and they could be later positioned in any of the
defined slots, no matter where they have been defined in the
HTML.

BIOTinfo Magazine

Again, I am tackling a problem that would require non-rectangular
slots to be accomplished. I am referring to the page of BIOT local
magazine that was shown in 150, and, more specifically, to the art-
icle that appears on the bottom and that was studied in pages
149–153.

body {

display: "aaa"

News

237

"abb";

}

#animations { position: a; }

#biot-centenaires {

position: b;

display: "@c"

"@@";

}

#biot-centenaires img {

position: c;

}

Styling a Definition List

This is one of the case studies analysed on previous chapter (see p.
156) where the advantages of the Template Layout Module over
current CSS properties is more evident. In that example, it was
shown how it was needed to combine floats with negative margins
to put each list element (dt and dd) into its desired position. Even
without changing the order in which they appeared in the HTML
document, it was not an easy task. Moreover, that layout is using a
fixed height for dt elements (otherwise, it would have been impos-
sible to arrange the subsequent elements).

Although the design was explained on Chapter 7 in detail (pp.
153–163), it will be summarised here to make easier the comparis-
on between what must be done in CSS 2.1 and how it would be with
the proposed template layout mechanism:

• All elements are floated to the left (see figure 1). An explicit width (in
pixels or other unit or percentages, but known a priori) and height
must be necessarily used for dt elements, since those are the dis-
tances that dd elements have to be moved downwards and to the left
in the following step.

• “dd” elements must be moved downwards an to the right, a distance equal
to the height and width, respectively, of the dt elements. In this
case, relative positioning is not an option, since the boxed must be

Demonstration: Case Studies Revisited

238

Figure 1. The first step in the
Caxigalines case study consis-
ted on floating every dt and
dd elements to the left. Using
current CSS properties the
desired final layout is only
possible if a fixed width and
height is established for dt
elements, since those will be
the same values to be applied
to the margins of dd elements
for moving them both vertic-
ally (downwards) and hori-
zontally (to the left).

Figure 2. Top and left mar-
gins are applied to dd ele-
ments to push them down
and to the left, placing them
below the previous dt ele-
ment. Note that the top and
left margins have to be equal
to the height and width of the
dt, which must therefore be
known a priori (they can not
adapt to fit their contents).
Margins, unlike relative posi-
tioning, actually moves the
element. Therefore, by mov-
ing dd elements we also make
room for the following dt ele-
ment on its right to put itself
on the empty space left by the
dd.

Styling a Definition List

239

Figure 3. This is the final ap-
pearance of the definition list,

once their elements have
been floated to the left and

every dd have been moved be-
low its preceding dt. Al-
though still a last step is

needed to assure that every
element have the same
height. Either the faux

columns technique (assum-
ing fixed widths and only two

rows) or the approach fol-
lowed by One True Layout

can be applied.

actually moved from its current position, and margins (including
negative ones) must be used to put each dd underneath its preced-
ing dt (figure 2).

• By pushing down the dd elements, the following floated element in
the source document (that is, the following dt), has empty room
and, according to float rules, is automatically moved to the left until
it touches the right edge of the preceding floated dt. The final result
is shown in the sketch of figure 3.

Once we have summarised the layout process with the current lay-
out capabilities of CSS, let us see how the same layout could have
been achieved with the Template Layout Module:

#categories {

display: "abc"

"def";

}

Demonstration: Case Studies Revisited

240

.alimentacion { position: a; }

.hogar { position: b; }

.moda { position: c; }

.papeleria { position: d; }

.tecnologia { position: e; }

.otros { position: f; }

The layout thus done is much
easier, bulletproof, and
order-independent than with
current CSS mechanisms.
Moreover, a completely dif-
ferent layout can be achieved
using the Template Layout
Module in a matter of
seconds, instead of hours
with floats and margins —as-
suming it were even pos-
sible—, by simply defining a
new template (a change in a
single property, without do-
ing any calculation).

That is all. And, actually, it is not the same layout. Note that no
heights nor widths are specified in the template. That means that the
layout would automatically adapt to any change in the font size,
browser window dimensions, type of font, or the contents of each
element. Not only the layout is much easier to achieve, but it also
resists any change in any of the mentioned factors, which are not un-
der the control of the designer.

But, even more important, the design so built is totally inde-
pendent on the content order. Thus, changing the position of the list
items would be so simple as to interchange the letters in the posi-

tion property.
Finally, a completely different layout can be done almost in-

stantly, with no more than changing the template (that is, the value
of the display property). For instance:

#categories {

display: "aac"

"aad"

"bbf"

"edf";

}

YoDona Magazine

The more complex of the layouts reviewed in the case studies
chapter is one of the better examples of the improvement that the
Template Layout Module would mean for creating CSS layouts. In
this case, it is an unordered list (see an excerpt of the markup on
169) that must be laid out following a complex 4 × 5 grid (see figure

Styling a Definition List

241

28 on 167), where each module of the grid have different dimen-
sions and orientation (figure 29, p. 168).

Notwithstanding its complexity, the layout can be achieved
with the Template Layout Module with a few properties. First, the
template is defined:

#agenda {

display: "abcde"

"fghij"

"kllim"

"noopp";

}

Although the above is not the only possible template, for this ex-
ample I consider that it is what most simplify the layout process. As
it can be seen, instead of defining a single slot for each module, I am
using two slots: one for the image and another for the description of
the event. By doing so, I am able to do all the layout with the Tem-
plate Layout Module, without recurring to absolute positioning and
paddings inside each slot for arranging the images. In addition, by
doing so it is also possible to simulate non-rectangular slots, as it is
required for the case of #juliettelewis, where the image spans two
rows (slot i), whereas the description is contained in a single cell
(slot h).

#diesirae { position: b; }

#diesirae img { position: a; }

#lacintablanca { position: d; }

#lacintablanca img { position: c; }

#marabu { position: j; }

#marabu img { position: e; }

#almudenabaeza { position: f; }

#almudenabaeza img { position: g; }

#juliettelewis { position: h; }

#juliettelewis img { position: i; }

#loscondenados { position: l; }

#loscondenados img { position: k; }

#maisonmumm { position: n; }

Demonstration: Case Studies Revisited

242

#maisonmumm img { position: o; }

#muchomas { position: p; }

#muchomas img { position: m; }

Widths and heights can be explicitly set for columns and heights or,
as in the template above, they can be left unspecified, thus obtaining
a fully liquid layout (both horizontally and vertically) that neverthe-
less retains the vertical alignment without overlapping.

As for the last example (Styling a Definition List), the main benefit
of using the Template Layout Module is appreciated when the lay-
out needs to be changed. Thus, a completely different layout could
have done, for instance, as follows:

#agenda {

display: "aaakll" /150px

"bbbkll" /40px

"bbbggi" /300px

"bbbffh" /250px

"oonncd" /250px

"ooeecm" /125px

"jjeepp" /170px

180px 180px 120px 150px 180px 180px;

}

The result of applying the template above can be seen in figure 4, as
shown using the ALMcss prototype presented in this thesis.
A more traditional layout, using a single column, could have been
achieved with a template like this (the result, as it is rendered in a
real browser by ALMcss is shown in figure 4):

#agenda {

display: "baa" /200px

"cdd" /200px

"jje" /225px

"gff" /250px

"ihh" /250px

"llk" /200px

YoDona Magazine

243

Figure 4. An alternative, com-
pletely different layout for the

agenda page of YoDona
magazine, made with the

Template Layout Module,
simply changing the tem-

plate.

Demonstration: Case Studies Revisited

244

Figure 5. Another, more tra-
ditional layout of YoDona
magazine. As for the example
before, it has been achieved
just changing the template.

YoDona Magazine

245

"oon" /300px

"ppp" /170px 180px 100px 180px; }

One True Layout

This section will redo using the Template Layout Module not a case
study of Chapter 7 —all of them have already been reviewed in this
chapter—, but the One True Layout technique that was studied on
Chapter 6. As it was described there (p. 122), this technique achieves
any number of columns, in any order, where all columns are also the
same height, using current CSS capabilities. This section will review
how the same effect can be obtained much more easily with tem-
plate layout.

I will use for this demonstration the same example that I made
for explaining that technique (see figures 12 and 15).

Using the Template Layout Module, a 3-1-2 layout like the one
that was explained in that chapter would be as easy as:

#content {

display: "312";

}

#orange { position: 1; }

#strawberry { position: 2; }

#lime { position: 3; }

With just those properties we are achieving the desired order and
equal-height columns, using a liquid layout. But, unlike One True
Layout, we can obtain hybrid layouts that mix fixed-width width li-
quid columns, using as many different length units as we want. For
example, the following template would create a three-column layout
where the first two columns have a width of 120 pixels and 18 em,
while the third one is liquid:

#content {

display: "312";

120px 18em max-content;

}

Demonstration: Case Studies Revisited

246

Figure 6. Any variation of the
original One True Layout can
be achieved just with a simple
change of letters in the tem-
plate, even if it involves sever-
al rows, or different number
of columns. The figure shows
how the template below is
rendered in a real browser us-
ing ALMcss, the prototype
developed for this thesis (one
of them).

Finally, the major strength of template layout comes when more
drastic changes are required. Thus, it is possible to get the layout of
figure 6 with only using this template:

#content {

display: "332"

"111";

}

One True Layout

247

Figure 7. The old version of
Stopdesign web site that is
going to serve as a starting

point for my demonstration
of how a complete redesign of

a real web site can be made
with the Template Layout

Module without changing the
markup, which, in addition,

has been cleaned and is even
more structural than the ori-

ginal one.

A Complete Redesign

The last section of this demonstration chapter will be devoted to,
first, recreate the layout of a real web site using the Template Layout
Module, and, then, tackle a complete redesign of such layout so that
it looks like a completely different real site. All of that with a purely
structural markup. The web site I will use for this example is an old
version of Stopdesign1, the consultancy firm of the renowned de-
signer Douglas Bowman (see figure 7).

1 www.stopdesign.com

Demonstration: Case Studies Revisited

248

http://www.stopdesign.com/

<body>

<div id="header">...</div>

<ul id="nav">

<li id="current">Home

<a ...>Portfolio

...

<div id="highlights">

<h2>About Stopdesign</h2>

<p>A design consultancy ... </p>

...

<h2>From the Portfolio</h2>

...

</div>

<div id="latest">

<div class="entry">

<h2><a href="/log/2006/05/27/

going-to-google.html"

>Going to Google</h2>

<p>The cat’s out of the

bag....</p>

...

</div>

</div>

<div class="entry">

<h2><a href="/log/2006/05/26/

webstocking.html"

>Webstocking in NZ</h2>

...

</div>

<div class="entry">

<h2><a href="/log/2006/04/29/

google-calendar-tips.html"

>Google Calendar tips</h2>

...

</div>

<div class="previously">

<h2>Previous Entries</h2>

<dl>

<dt><a href="/log/2006/04/13/

google-calendar.html"

>Google’s new dating

game</dt>

<dd>...</dd>

...

</dl>

</div>

<div id="latestlinks">

<h2>Latest Links</h2>

<ul class="offsite">

...

</div>

<div id="frequentedsites"></div>

<div id="organizations"></div>

<div id="feeds"></div>

<ul id="about">

About

Events<

...

<div id="footer">...</div>

</body>

Figure 8. A sketch of what could be a purely structural markup for www.stopdesign.com.

A Complete Redesign

249

http://www.stopdesign.com/

This is somewhat subjective, of course, since I am not the author
of that site. But, for the purposes of this example, let us suppose that
this is the most logical order of the content. How could then the lay-
out shown in figure figure 7 be made?

First, given that the navigation menu appears at the top of the
page and it is below it in the source code, the only choice that we
have is to use absolute positioning. And the same can be said of the
other navigation bar which appears near the end of the HTML and
must be laid out just below the header. As it has repeatedly said in
this dissertation, this has the drawback that the height of the navig-
ation bars and the header must be explicitly defined so that they can
be placed one below the other without overlapping.

Next, the sidebar with the highlighted content can be placed on
the right by using float: right; and assigning it an explicit width.

Finally, what happens with the two columns that appear below
the latest entry? It could also be easily done by floating them to
right. But then we need add an extra div to wrap the elements that
make up the middle column. And, again, this requires them to have
an explicit width.

So I have been able to do the layout with a few CSS2 properties
and almost no changes in the original HTML. Where is the problem
then?

As always, the first problem with which we encounter in CSS is
the complexity. The explanation above has been oversimplified for
brevity, but it is not as easy as it might seem, as it has been thor-
oughly explained in this and previous chapters. Let us compare the
actual design with how it would have been accomplished using tem-
plate layout (see figure 9)

Changing the LaChanging the Layyoutout

But let us go further and think what would happen if we wanted
a completely different layout. For example, one like that of A List
Apart1. Figure 10 shows the final appearance of Stopdesign rede-
signed, for the purposes of this example, to look “like” A List Apart.

1 www.alistapart.com

Demonstration: Case Studies Revisited

250

http://www.alistapart.com/

#container

{

display-model: "a"

"b"

"c"

"d"

"e";

}

#nav { position: a; }

#header { position: b; }

#cnav { position: c; }

#footer { position: e; }

#content

{

position: d;

display: "oop"

"qrp";

}

.entry { position: r; }

#lastest .entry { position: o; }

#highlighted { position: p; }

#links { position: q; }

#previously { position: r; }

Figure 9. The Stopdesign home page as it could be laid out with the Template Layout Module.

Note that I am completely breaking the linear order of the ele-
ments in the markup: all the elements in the highlights section are
now distributed across several columns and mixed with elements
coming from other sections in the original document; some ele-
ments from the footer are now in the right column, as well as the

A Complete Redesign

251

Figure 10. Stopdesign home
page with the layout of A List

Apart

company-navigation; the most recent article now goes to the end
of the middle column; etcetera.

Everybody will agree that this would be impossible today with
CSS without many changes in the HTML source code. Neverthe-
less, with the Template Layout Module it could have been easily
achieved (stylistic changes aside) with the following template:

body

{

Demonstration: Case Studies Revisited

252

display-model: "aaaaa"

".bcd."

"eeeee"

225px * 230px 230px 155px;

}

And then putting the pieces of the document into the desired slots:

#nav, #header { position: a; }

.entry,

#previously,

#about { position: b; }

#portfolio,

#mostrecentarticle,

#events { position: c; }

#searchform,

#latestlinks,

#frequentedsites,

#organizations,

#host,

#powered,

#feeds,

#cnav { position: d; }

#footer { position: e; }

CConclusionsonclusions

As it has been shown with this case study, even if only for the simpli-
city that it brings to the design process, the Template Layout Mod-
ule would be a major improvement over current CSS layout mech-
anisms, where it really stands out is when it comes to redesign.
This is a consequence of the much more independency between the
structure of the content and the visual layout that it achieves with
respect to floats, without the drawbacks of absolute positioning.

A Complete Redesign

253

ALMcss: A
JavaScript
Implementation of
Template Layout
Module
This chapter presents ALMcss, the first available
implementation of the CSS3 Template Layout
Module. It is a JavaScript prototype that, once
included by a web page, allows to specify its layout
using the new properties and values defined in that
module, and works on most current web browsers.

Of course, if the solution presented here is
eventually accepted to become a W3C Specification,
are browser vendors who should implement it natively.
But, in the meantime, notwithstanding it is merely a
prototype and, as such, has some bugs and does not
implement all the features of the proposed solution, it
has served as a proof of concept that such proposal is
not only feasible, but it can be in fact implemented
using just JavaScript and the DOM.

11

Acknowledgements

The development of ALMcss,
the prototype that imple-

ments in current browsers the
solution presented in this

thesis, was initially funded by
a research project of CTIC

Foundation, and then subse-
quently refactored and im-
proved in several students’

master theses.

The initial version of the prototype developed for this thesis was
funded by CTIC Foundation1 (Centre for the Development of In-
formation and Communication Technologies in Asturias), through
a research project with Fundación Universidad de Oviedo2 (FUO),
named Extensión del estándar CSS3 que permita la adaptación multidispo-
sitivo de contenidos web (project code FUO-EM-115-05, code name
ALMcss). It was the award-winner research project in the I Premios
Sociedad Información en Asturias (First Asturias Information Society
Awards), promoted by the regional government of the Principality
of Asturias.

The project, of a duration of one year, consisted on a research
grant that was first held by María Rodríguez, who thus became the
developer of the first implementation of the Template Layout Mod-
ule3. When she got another position, after doing an invaluable job,
her grant was occupied by Miguel García, who refactored the code
and solved some bugs. It is compulsory to express my gratitude to
both of them, as well as to CTIC Foundation, which graciously al-
lowed me to donate the project to the research and web communit-
ies, making it publicly available under a W3C License.

I can not forget, either, Enrique Cabal, a student of mine who,
for his B.S. in Software Engineering undergraduate thesis developed
a layout engine, both in Java and C#, that implemented the Tem-
plate Layout Module with a subset of HTML and CSS, and who, for
his master thesis in Computer Science, continued the previous work
of María and Miguel, refactoring the prototype and improving the
layout algorithms ().

1 http://ctic.es
2 http://www.funiovi.org
3 Strictly speaking, of the Advanced Layout Module, as it was formerly named (Bos,

2005). It has not been until the public Working Draft of 2009, April 9 (Bos, 2009)
when its name changed to Template Layout Module.

ALMcss: A JavaScript Implementation of Template Layout Module

256

http://ctic.es/
http://www.funiovi.org/

Introduction

A short history of the development of ALMcss has already been
told in the first chapter of this dissertation, and therefore it will not
be repeated here. Instead, this chapter focuses on describing the
design of the prototype. As it has been noted in the summary of the
chapter, ALMcss (acronym for Advanced Layout Module for CSS) has
been the first and, for more than three years, only available imple-
mentation of the CSS3 Template Layout Module presented here as
the solution proposed by this author to the problem of layout on
the web, and was developed while it was a “W3C Members Only”
Working Draft. It was first presented in World Wide Web Conference
(Bos & Acebal, 2006) and then in Clarke’s book (2007a), to which
I was honored to contribute (Clarke & Acebal, 2007).

Having a prototype that implements, to a certain extent, the
Template Layout Module, not only has allowed me to demonstrate
that it should not be difficult to implement natively by browser
vendors (which is, of course, the ultimate goal if it is eventually ad-
opted as a W3C Recommendation to form part of the CSS3 spe-
cification), but, since I made it publicly available trough a W3C Li-
cense, and despite its many bugs, web designers has also been able
to see the possibilities of the template-based positioning in practice,
working in a real browser, instead of having to figure out how it
works just reading the specification.

It has not been until very recently when a second implement-
ation of the module has appeared, also as a JavaScript prototype
(Deveria, 2009). Today, more than three years after ALMcss was
developed, there is not any major browser that supports it, even ex-
perimentally.

Before describing the design of the prototype, the following sec-
tion discusses the alternatives considered for its development, and a
second prototype that was later developed for this thesis, following
another of such approaches, is also briefly introduced.

Acknowledgements

257

State of the Art

The first phase of the research project consisted on a study of the al-
ternatives for the implementation of the prototype. The four differ-
ent approaches that were analysed are enumerated below, and then
explained in some more detail in next subsections:

Changing the code of an open source browser
Since there are quite a few good browsers, including some industrial
ones, that either are open source or are based on an open source
layout engine, the first obvious alternative would be to take one of
them and add the new layout functionality to it. This would have
the benefit of allowing us to concentrate on the new layout fea-
tures, since the rest of the CSS implementation should be left to the
browser. As it will be seen, this is not so in practice.

Creating a layout engine from the scratch
Another option would be to develop a prototype from the scratch.
Of course, given the time constraints (one year, and just one deve-
loper), we could not pretend to implement a fully compliant CSS
2.1 browser that in addition supported the more advanced layout
features of Template Layout Module. But it would be possible to
develop a minimal HTML/CSS parser and layout engine that did
not care of most CSS properties, such as those of fonts, list styles,
borders, etcetera, and concentrate only on the new layout capabilit-
ies.

Implementing an extension of an existing browser
Some browsers let developers extend their functionality through ex-
tensions, also known as add-ons, being Mozilla Firefox the one that
counts with the most impressive number of them, including some
well-known ones by web developers, such as Firebug1 or Web
Developer Toolbar2. It seems to be, thence, a reasonable alternative
to be considered for the development of ALMcss.

1 http://getfirebug.com/
2 http://chrispederick.com/work/web-developer/help/

ALMcss: A JavaScript Implementation of Template Layout Module

258

Developing a JavaScript plugin
A slightly different version of the latest alternative was to develop
not an extension for a concrete browser, but a JavaScript prototype
that every web page could include and, once loaded by the web
browser, accessed to the underlying HTML document and CSS
rules through the Document Object Model (DOM) to retrieve the
new layout properties and then modified the document accordingly,
after computing the position of the so positioned elements.

Changing the CChanging the Code of an Open Sourode of an Open Sourcce Bre Broowserwser

This was the first and probably most obvious alternative considered
for the development of the prototype. Given the standard compliant
browsers that either are open source, like Mozilla Firefox, or are
based on some open source CSS layout engine, as is the case with
Apple Safari and the open source engine WebKit, they seemed good
candidates to be modified to include the new layout functionality.
Therefore, a significative amount of time was devoted to study their
source code and developer documentation to analyse the viability of
this alternative.

Although the results of such study are too extent as to be de-
tailed in this dissertation, the main conclusions of our review will
be outlined. To do this, I will rely on the study of one specific open
source browser: Mozilla Firefox, which main architecture is depic-
ted in figure 1. Some comments about the open source layout en-
gine WebKit will also be made.

Mozilla Structure of
Subdirectories

A web browser, and, specifically, its layout engine, is a complex
piece of code. Adding to it new properties or, in this case, new values
for existing properties (those defined by the Template Layout Mod-
ule for the display and position properties), and the behaviour as-
sociated to these new values, would require changes in many com-
ponents of the browser, from the CSS parser to the layout engine.
Although this is not the place to describe them in detail, some of the
most important directories in the code source structure of Firefox
are the following (Mozilla, 2009a):

• browser: contains the main classes of the browser itself.

State of the Art

259

Firefox architecture

Figure 1. Firefox architecture.

• content: was taken apart from layout and contains objects that are
exposed to the DOM.

• dom: contains C interfaces and code for implementing and tracking
DOM objects in Javascript. It forms the C substructure which cre-
ates, destroys and manipulates built-in and user-defined objects ac-
cording to the Javascript script. For example, if the Javascript script
adds a user-defined attribute to the document (such us docu-

ment.goofy = 1), this code will create the goofy node, put it on the
document node and manipulate it according to any later Javascript
commands.

• layout: it is the core of the layout engine, which decides how to di-
vide the real state of the window among all the pieces of content.
It is the responsible of resizing and arranging the content accord-

ALMcss: A JavaScript Implementation of Template Layout Module

260

ingly to CSS1, CSS2, alignment styles and the content itself. It does
not display the content, but just computes its position and size (which
is known as reflowing the document). This code is also known as
NGLayout and Gecko.

• parser: contains the HTML and XML parsers.

Adding a New Style
Property

Summarising the process described in Mozilla (2009c), adding a
new style property would require to modify at least the following
parts of the source code:

• CSS property names and hint tables: the system must be formally
informed of the existence of the new property name, modifying the
following classes and interfaces: nsCSSPropList.h, nsChangeHint,
nsStyleConsts.h, and nsCSSProps.cpp.

• CSS declaration: the declaration must be able to hold the new
property and its values. To do this, changes are needed to the structs
and classes defined in nsCSSDeclaration.h and nsCSSDeclara-

tion.cpp.
• CSS parser: the parser must be able to parse the property name,

validate the values, and provide a declaration for the property and
value

• Style context: the StyleContext must be able to hold the resolved
value of the property, and provide a means to retrieve the property
value. Additionally, it has to know what kind of impact a change to
this property causes.

• Rule nodes: the RuleNodes need to know how the property is inher-
ited and how it is shared by other elements.

• DOM: the style should be accessible from the DOM so that it can
be dynamically retrieved or modified.

• Layout: layout has to know what to do with the property, that is, the
meaning of the property, its actual behaviour, and how it affects to
the rest of the layout process.

Too Complex and Poorly
Designed Code

The problem is not to have to make changes in all the modules ex-
cerpted above, since some of these changes are, after all, unavoid-
able (it is clear, for example, that adding a new property will neces-
sarily imply to modify the parser code), so much as the fact that the
overall design of Firefox and, specifically, its layout engine, Gecko,

State of the Art

261

// Whether or not we can collapse our own margins with our children. We don't

// do this if we had any border/padding (obviously), if we're the root or HTML

// elements, or if we're positioned, floating, a table cell.

m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot()

&& !block->isPositioned() && !block->isFloating()

&& !block->isTableCell() && !block->hasOverflowClip()

&& !block->isInlineBlockOrInlineTable();

Figure 2. A code excerpt from RenderBlock.cpp class in WebKit source code. Only that class is about five thousand
lines of code long, and it is plenty of duplicated conditional logic like the outlined in this figure. And it is just one
of the many C++ classes that are involved in the layout process. Certainly, it is not the better example of good soft-
ware design that one can find. In addition, it is almost undocumented (although it is true that, at least, significative
names are used for variables and methods).

leaves much to be desired in terms of good object orientation and
use of design patterns. And the same happens at an implementation
level, with a C++ code that many times resembles more a “C with
classes”. Some reasons for the complexity of the layout engine have
been suggested by Mozilla’s engineer Baron (2003), and they in-
clude the great number of people involved, and an obsession for ex-
cessive optimisation in some areas (and, when this happens, is al-
ways the code readability that suffers).

Other of the layout engines compared in our review is WebKit
(2010), on top of which Apple Safari (and now Google Chrome)
are built. It has been traditionally accredited as having a cleaner
code than Gecko, and this is probably true with regards to the cod-
ing style. But, when one looks at its design, essentially the same pit-
falls can be found. Just as an example, let us consider the WebKit
class responsible for laying out block boxes, RenderBlock. It has
5080 lines of code. That is not an error per se, since it is true that
layout, as it has already been stated, is a complex task. But it is full of
conditional logic like the outlined in figure 2 that could have been
avoided if some design patterns had been applied.

Why do not simply use a single condition like this?:

if (block->canCollapseMarginsWithChildren()) {...}

ALMcss: A JavaScript Implementation of Template Layout Module

262

Lack of DocumentationAnother major problem which both Gecko and WebKit suffer is the
lack of documentation. Being so complex pieces of code, one would
expect to find an extent documentation where their overall architec-
ture and detailed design were explained: which classes are respons-
ible of what, class diagrams explaining its static structure, sequence
diagrams that show the interaction in execution time between ob-
jects involved in complex process like layout and rendering, written
explanations of what design decisions have been taken and why,
etcetera. Nevertheless, such sort of documentation is nonexistent in
both cases, or, at least, it is very difficult to find. It is true that digging
into the developer mailing lists, or browsing the internet, some in-
formation can be found, in form of presentations (Baron, 2008;
Fisher, 2009; Baron, 2006a), blog posts, etcetera. But it is not the
type of documentation that would be expected in so big software
projects.

ConclusionsImplementing the Template Layout Module in one of the major
open source browsers would have been, no doubt, a great achieve-
ment for this thesis. But it also turned out to be an even more com-
plex task than it seemed to be when we began our review. Not only
for the complexity of code itself —something that is an essential fea-
ture of a layout engine that implements a complex specification like
is CSS 2.1—, but for the following two reasons that have already
been pointed out in the paragraphs above:

• The lack of a proper documentation
• A design that is not so object-oriented as it could be

The former issue would not be insurmountable, had it not been for
the latter. Despite the absence of an appropriate design documenta-
tion would certainly be an inconvenience —specially when dealing
with large-scale code of more than one hundred thousand lines of
code, as is the case of both Gecko and WebKit—, it could have been
worked out if the overall design were understandable. But we found
out that, although the WebKit code seems to be simpler than that of
its counterpart, Gecko, in both cases adding a new feature (even a
single CSS, as it has been shown), requires modifying many parts of
the code. Specially in our case, where a completely new positioning

State of the Art

263

scheme had to be implemented, it would imply to modify the core
of the layout engine, which behaviour is scattered over many classes,
something that exceeded the time and resource constraints of our
research.

In addition, although seeing the Template Layout Module im-
plemented in a real browser would have been very rewarding, it did
not have, either, the same benefits, in terms of public visibility, as
others of the considered options. It would have been served per-
fectly well to the purpose of proving that the Template Layout
Module could be implemented, of course, but… how many people
would be willing to download a modified version of a layout engine
and experiment with it? (unless our changes were later incorporated
to the real browsers that use it, of course, in which case the situation
would be the opposite and the achieved visibility would be the max-
imum).

For all the above, this option was discarded.

CrCreaeating a Lating a Layyout Engine frout Engine from the Scrom the Scraattchch

Of course, if the alternative of modifying an existing browser was
discarded for its complexity, by creating a layout engine from the
scratch we do not mean to implement a fully CSS 2.1 compliant
browser, something that would have been unfeasible in a short
amount of time. But what does not seem unrealistic is to develop
a prototype, using a high-level object-oriented programming lan-
guage like C++, Java, or C#, that implements only an (X)HTML
parser and a minimal subset of CSS (for instance, colour related and
other easily implementable properties, leaving aside the complexity
of margins, floats, absolute positioning, tables and the rest of layout
properties, that could be simply ignored), and which focus only on
implementing the Template Layout Module.

To summarise and clarify the paragraph above, the main pur-
pose of this alternative would be to create a layout engine as small as pos-
sible, with a minimal CSS 2.1 support, but that implements CSS3 Template
Layout Module as better as possible.

Reusing a Layout Engine? Another intermediate option between this alternative (imple-
menting a completely new layout engine) and the previous one

ALMcss: A JavaScript Implementation of Template Layout Module

264

(modifying the source code of a real browser) that was also carefully
studied would be using any library that provides a certain support
for HTML and CSS, or reusing the code of some small browsers, in-
stead of starting from the scratch.

In this sense, the following “browsers” and layout engines were
also studied in our review:

• Flying Saucer (2009)
• ViewML (Century Software, 2009)
• XSmiles (2008)

In my opinion, although some of these experimental browsers have
a code that is relatively small and understandable, their benefits are
less than its drawbacks when compared with the industrial browsers
reviewed in the last section. With the sole exception of Flying Sau-
cer, they can not be considered fully CSS 2.1 compliant, and neither
their code nor their documentation is so better as to compensate
for choosing one of them instead of the much more capable Firefox,
WebKit, or any other of the open source industrial browsers, which
also count with a much greater community of developers. There-
fore, this intermediate solution was discarded, although a deeper re-
view of their source code may still be recommendable, if only to ac-
quire knowledge about the design of a layout engine. But, in sum-
mary, if the alternative were to implement our own layout engine for the
Template Layout Module, it should be actually from the scratch, and not re-
using code of any other CSS renderer.

Another Prototype of This
Thesis

Although this was not the alternative finally chosen for the de-
velopment of the prototype in our research project, it turned out to
be eventually implemented out of such project (but still within the
research conducted for this thesis), by a student who asked me to be
the supervisor of his undergraduate thesis. By that time, the devel-
opment of ALMcss, the JavaScript prototype presented in this
chapter, which was the final chosen option, had already been com-
menced, but the idea of developing a small layout engine from the
scratch still was (and is) very appealing to me. So I entrusted him
with that task. Some months later, the result was not one, but two
implementations of the Template Layout Module (then named Ad-

State of the Art

265

vanced Layout Module): a little Java desktop browser and a C# version
of the same browser for mobile devices, developed in .NET Com-
pact Framework (Cabal, 2006).

Both browsers not only implement the first public working draft
of the Advanced Layout Module (), but they also support the fol-
lowing HTML elements and CSS properties.

The supported HTML elements are:

• Headings: h1, h2, h3, h4, h5, and h6

• Paragraphs: p
• Line breaks: br
• Images: img
• Links: a
• Emphasis: em
• Strong: strong
• div

• span

As for CSS, the following features are supported (in addition to the
CSS3 Advanced Layout Module):

• Linking a external style sheets through the link element
• Class and type selectors
• Fonts: font-family, font-size, and font-weight

• Colors: color, and background-color

• Margins: margin, margin-top, margin-right, margin-bottom, and
margin-left

• Paddings: padding, padding-top, padding-right, padding-bottom,
and padding-left

• width and height

• display: inline | block
• The following length units are allowed: px, em
• Percentages are also supported

The ALM mobile renderer can be seen working in figure 3, which
shows two grids, as they are seen in a old PDA with Microsoft Pock-
et PC 2003.

ALMcss: A JavaScript Implementation of Template Layout Module

266

Figure 3. Two templates, as
they are rendered by the pro-
totype that was developed by
Cabal (2006), under my su-
pervision, as an alternative to
ALMcss, the JavaScript pro-
totype that will be later de-
scribed in this chapter.
Cabal’s prototype (a small
HTML/CSS/ALM renderer)
is written in C# for the Mi-
crosoft .NET Compact
Framework. The examples in
this figure are screen captures
made on an old HP iPAQ
4150 PDA running Microsoft
Pocket PC 2003.

The figure on the left corresponds to the following simple grid,
when it is applied to an empty document (no elements in the body).
The template defines a simple 2 × 2 template that uses the default
values for column widths and row heights (‘*’ in both cases) defined
by the existing version of the Advanced Layout Module (Bos, 2005)
when this prototype was developed:

body {

display-model: "ab (*),

cd (*)"

(* *);

}

As for the right figure, it is the result of displaying the following tem-
plate, which mix fixed and flexible heights:

body {

display-model: "abc (50px),

def (20px),

ghi (*)"

(70px 40px);

}

The Java Desktop Version
In addition to the mobile renderer mentioned above, Cabal, for the
same undergraduate thesis (2006), also ported it to J2SE, therefore

State of the Art

267

Figure 4. The desktop Java
version of the Advanced Lay-

out Module renderer.

creating a desktop version with the same capabilities (that is, limited
support of HTML and CSS, plus nearly full implementation of the
first Advanced Layout Module Working Draft). Figure 4 shows a
screen capture of it displaying a page written in our subset of HTML
with some CSS rules for fonts and colours, and template based posi-
tioning. It is a grid of twelve equal columns, with no gutters between
them. A portion of the style sheet is shown in figure 5 (note that,
due to parser deficiencies of the prototype and a notably absence of
most CSS selectors, many classes and duplicated styles have to be
used):

Conclusions The example in figure 4 shows how a relatively complex layout
can be implemented in our prototype even in the absence of floats
and absolute positioning features, just using the limited template
features defined in the first public draft of the solution proposed by
this thesis: the Template Layout Module. And, if just the features of

ALMcss: A JavaScript Implementation of Template Layout Module

268

body {

display-model:

"............ (50px),

aaaaaaaaaaaa (intrinsic),

bccdeefgghii (160px),

jjjjjjjkkkkk (intrinsic)"

(*);

}

h1 {

position: a;

font-size: 3em;

font-family: Times;

}

.one {

position: b;

font-size: 44px;

}

.one-text {

position: c;

font-family: "Lucida Sans";

}

...

.four-text { position: i; }

.main-picture { position: j; }

h2 {

position: k;

font-family: "Lucida Sans";

font-size: 36px;

color: #666666;

}

h3 {

position: k;

font-family: Times;

font-size: 18px;

color: #666666;

}

.text { position: k; }

Figure 5. Part of the style sheet for the layout of figure 4. It uses a template (grid) that consists on twelve equal-
width columns with no gap (gutters) between them, within several modules (slots) have been defined, each span-
ning a certain number of rows and columns. Each slot acts as a container where the different pieces of content of
the page can be placed. This template is right rendered in our ALM desktop renderer.

grouping selectors, multiple declarations (Bos, Çelik, Hickson &
Lie, 2009, §5.2.1), descendant selectors (Bos et al., 2009, §5.5) and
cascading, were added to the renderer, such design could be created
with less HTML and CSS code than it is required in any real, full
featured CSS 2.1 browser. I think that this well serves as a demon-
stration of the goodnesses of the proposed solution.

State of the Art

269

Even with no floats nor abso-
lute positioning features, a

little renderer developed
completely from the scratch

is able to create complex lay-
outs easier than in a full fea-
tured CSS 2.1 browser, and

with less HTML and CSS
code. This proofs both the ad-

vantages of the Template
Layout Module and how rel-

atively simple to implement it
is.

In addition, as it has been shown in this section, creating from
the scratch a little layout engine that implements the solution pro-
posed in this thesis was not a so herculean effort as it could be
thought at first, and, although this was not the alternative chosen for
the ALMcss research project, it was later developed in Cabal’s un-
dergraduate thesis (2006), for which both a Java desktop and a C#
mobile versions of the same Advanced Layout Module (Bos, 2005)
renderer were implemented.

However, this option also suffers from the lack of public visibil-
ity that has already been mentioned for the case of modifying an
open CSS layout engine. Even though it would have perfectly serve
as a proof of concept of this thesis, I had imposed another require-
ment on myself: as a member of the W3C and coauthor of the Tem-
plate Layout Module, I really wanted that this thesis also served as a
way of promoting the module among web designer community and
convincing them of its advantages. To do so, it is needed a solution
that works on the browser itself and that understands every current
CSS property, and not just a subset of them. Therefore, this solution
was discarded for our research project.

ImplemenImplementing an Exting an Exttension of an Existing Brension of an Existing Broowserwser

Giving our needs of a relatively easy of implementation solution
while in turn were as visually appealing and easy to use as possible
for end users, this seemed to be one of the most attractive alternat-
ives for developing our prototype. Since the title of this subsection
may be some ambiguous, I must first clarify what I understand by a
browser extension, in the context of this dissertation, specially when
compared with browser plugins.

Browser plugins are binary programs that are installed by the
user in the browser itself, extending its functionality (for instance,
the Flash Player almost ubiquitously present in any browser if the
user wants to access to YouTube videos and other similar content).
Plugins generally access to internal browser structure through some
API provided by each specific browser. They are also responsible for
most browser crashes and security vulnerabilities (2006).

ALMcss: A JavaScript Implementation of Template Layout Module

270

Conversely, browser extensions (also known as “add-ons”), are
primarily JavaScript applications that frequently use other web tech-
nologies, like CSS and DOM. In the case of Firefox, if the extension
requires user interface, this is written in XUL, the user interface lan-
guage that was reviewed in a previous chapter. Firebox extensions
also rely on XPCOM for accessing to some of the core components
of its layout engine, Gecko. XPCOM is a cross platform component
model, conceptually similar to Microsoft COM, that provides a set
of core components and classes for memory management, threads,
or basic data structures (2009b). By specifying the interface of a
component using the XPIDL interface description language (IDL),
XPCOM components can be written in any of the languages for
which it has bindings (currently, JavaScript, Java, Python, Perl, and
Ruby, in addition to C and C++, the implementation languages of
XPCOM). Thus, a developer can access from the code of its exten-
sion to other XPCOM components as well as to expose modules of
his extension to any other XPCOM component.

Two would be the main benefits of developing the Template
Layout Module prototype as a browser extension (specifically, as a
Firefox extension):

• The XPCOM library provides access to some of the internals of the
browser, with more control than simply reading and manipulating
the DOM from JavaScript, but without the complexity of modifying
the source code of the layout engine.

• Extensions are very easy to install by end users. This, combined with
the widely use of Firefox, would give our prototype the possibility
of being used by a great number of web designers and developers to
test the possibilities of the Template Layout Module.

It also has the drawback, though, that if we opted for this solution,
we would be constricting ourselves to an specific browser. However,
this is not too problematic, as long as a widely used browser, such as
Firefox (which seems to be the most appropriate for this approach
and which counts with the best documentation about the process
of developing extensions) were chosen. In conclusion, this solu-
tion would be a balance between modifying an open source exist-

State of the Art

271

ing browser and developing a completely new prototype from the
scratch.

DDeveveloping a Jaeloping a JavvaScript PluginaScript Plugin

Although the latest option of building a browser extension seemed
adequate for the purposes of our research thesis and, by extension,
of this thesis, it was not our final decision. While studying that al-
ternative, we wondered whether, if the core of Firefox extensions
are just standard web technologies (JavaScript, DOM, and CSS), it
would be possible to implement the Template Layout Module pro-
totype using just those technologies, as a general JavaScript plugin
not tight to any particular browser.

I have to admit that I was somehow skeptical about the relat-
ively complex layout processing that had to be done by the proto-
type could actually be implemented using just plain JavaScript and
standard DOM, without relying on the access provided by XPCOM
to the layout internals of Gecko.

However, that was until we reviewed the Edwards’ IE7 project
(2010). It must not be confused with the Microsoft browser of the
same name (which did not exist when Edwards wrote IE7). IE7
is a JavaScript library that, in its origins, was aimed to make Mi-
crosoft Internet Explorer 6 (IE6) behaved more like a CSS compli-
ant browser. Specifically, by linking to an HTML document the ex-
isting version of this JavaScript library when our review was con-
ducted (Edwards, 2005), which was compound of fifteen JavaScript
modules, IE6 was able to understand, among others, the following
CSS properties and features:

• Advanced CSS selectors
• min-height and max-height

• PNG transparency

In addition, some well-known IE6 bugs were solved. Edwards was
pioneer in using JavaScript for solving deficiencies in the CSS sup-
port of web browsers. For us, the excellent Edward’s work constitu-
ted an evidence that JavaScript could be actually used to carry out

ALMcss: A JavaScript Implementation of Template Layout Module

272

non trivial additions to the layout behaviour of web browsers, and it
was the first source of inspiration for ALMcss.

While we were reviewing the alternatives for the implementa-
tion of the prototype, Savarese (2005) wrote an introductory art-
icle about other CSS3 Working Draft: the Multi-column Module.
Savarese’s article was accompanied by a prototype, a cross-browser
JavaScript implementation of the multi-column module. Both au-
thor’s works definitively showed us that a JavaScript implementa-
tion of the template layout module had to be possible.

JavaScript allows to write
cross-browser extensions that
add new CSS features not yet
supported by browsers, and
that can be used transpar-
ently to the user, just by link-
ing the author the JavaScript
code in the source HTML
document.

On the other hand, writing our prototype using just standard
JavaScript and DOM had a clear advantage over all other alternat-
ives in terms of the visibility of the project: in theory, it should work
on any browser, current or past, that supports JavaScript. Although
this is not so easy in practice, due to differences in JavaScript and,
above all, DOM browser implementations, it can be solved writing
carefully our JavaScript code to deal with those differences.

Even better, so developed prototypes can be currently used,
even in real web sites1, without any user intervention (and even
without he actually notices it), simply by linking the JavaScript code
from the HTML document.

The major inconvenience, as it has already been stated, is the
fact of having to program it in JavaScript. Not by the language itself,
which, as Crockford has repeatedly said, “is the most misunder-
stood programming language” (Crockford, 2001), and counts with
many good features, but due to some related problems that did not
exist with the other alternatives, to wit:

• Almost everything must be programmed from the scratch. While by imple-
menting a browser extension we could rely on the facilities provided
by the underlying API, now there is a considerable amount of job to
be done before implementing the functionality of the template lay-
out itself: all style rules applied to the document must be retrieved
and manually parsed; as a consequence, CSS selectors must be com-

1 This is not recommendable, though, if the JavaScript code performs some critical
action over the final appearance or behaviour of the web page, because JavaScript
support might have been deactivated by the user, even though he has a JavaScript
capable browser.

State of the Art

273

pletely implemented in JavaScript to be able to retrieve the actual
elements (the DOM nodes) for which a template is defined or that
are positioned into some slot; only the computed styles of an ele-
ment can be accessed from the DOM; etcetera. In summary, many
low-level functionality must be implemented before we are able to
concentrate on the new layout features.

• DOM scripting is one of the more intricate parts of JavaScript programming.
It is not only that DOM itself requires verbose programming to do
common tasks, but the fact that, in Resig’s words (Resig, 2009), “if
there is a DOM method, there is probably a problem with it some-
where, in some capacity.”

• Lack of JavaScript programming tools. Although the situation is rapidly
changing, when the development of ALMcss started, there were
barely good IDEs for editing and debugging JavaScript code. It also
lacked from automated testing frameworks of logging facilities of
the same quality than the existing ones for mainstream program-
ming languages like Java, C++, or C#. Even today, due to its dynam-
ic features, it is difficult to find something as simple as a reliable doc-
umentation generator that works for every possible language con-
struction.

• Having to learn another programming language. We, the research team,
were much more used to program in strongly typed, static, class
based object oriented programming languages like the ones men-
tioned in the last point. Implementing the prototype in JavaScript
would force us to learn not only another syntax but, to some extent,
a new programming paradigm, to get used to JavaScript advanced
features like the differences between pseudoclassical, prototypical,
and functional inheritance (Crockford, 2008), lexically scope clos-
ures, etcetera.

However, in my opinion, the issues outlined above are just that:
inconveniences, not essential insurmountable problems of this fea-
ture. They would make us less productive implementing the proto-
type than we would have been in other programming languages to
which we were more used, but I thought that that was a small to
pay when compared with the fact of being able to have an earlier
cross-browser implementation of the Template Layout Module that

ALMcss: A JavaScript Implementation of Template Layout Module

274

could work even in the modern mobile browsers that counts with
a more than decent JavaScript support. My decision, based on the
review that was made for our research project with CTIC Founda-
tion, was made: the implementation of the Template Layout Mod-
ule would be developed as a cross-browser JavaScript prototype.

Once the main conclusions of our review have been discussed,
the rest of the chapter is devoted to describe the architecture and
design of the prototype, which was named ALMcss (Advanced Lay-
out Module for CSS).

Design of the Prototype

ALMcss, the prototype that implements Template Layout Module
in current browsers, is a relatively complex piece of JavaScript, with
near two thousand lines of code. Since it is not possible to directly
manipulate the internal layout engine of the browser (once that op-
tion has been discarded by the reasons exposed above), all the work
must be done through the Document Object Model, which is the
most intricacy part of JavaScript programming. In addition, there
are many tedious labour to do before to actually perform the lay-
out algorithm itself. Thus, a great portion of the code is devoted to
retrieve and parse the styles applied to the document, something
that is usually performed by the browser but that in this case was
not possible, because the new values defined by the Template Lay-
out Module are not yet supported by current browsers. Finally, al-
though the situation have improved a lot since the first version of
the prototype was developed, JavaScript still suffers from a lack
of development environments, debugging tools, automated testing
frameworks, or logging libraries of the same quality than that of
mainstream programming languages like Java, C++, or C#.

Although it would be very extent to describe here all the details
of its development, as it was done in the final report of our research
project (Acebal, Rodríguez, García, Cueva & Labra, 2006), the
main design decisions will be outlined. Other sources of informa-
tion about the prototype are the undergraduate theses of the stu-

State of the Art

275

dents later involved in its refactoring (Rodríguez, 2007; Cabal,
2009).

ArArchitchitececturture ofe of ALMCSSALMCSS

The rendering process in ALMcss is divided into four sequential
processing steps, thus following a Pipes and Filters architectural pat-
tern1 (Buschmann, Meunier, Rohnert, Sommerlad & Stal, 1996, pp.
53–70). The four phases of the rendering process are enumerated
and briefly described below:

The Rendering Process Parsing the style sheet
First, all the style rules that are applied to the document are parsed,
to obtain those rules that contain a template definition, a slot posi-
tion, or a vertical alignment property. Those are the rules (and the
elements retrieved by their selectors) that should be processed by
the prototype, since they are not yet understood by browsers.

Decorating the DOM
Browsers does not store information about the CSS declarations
that use any of the values defined in the Template Layout Module
for display or position properties, since they are not yet officially
part of CSS and therefore make the declaration illegal and must be
ignored, according to CSS 2.1 specification. The approach followed
in ALMcss to retain them until they be processed in subsequent
steps is to store them in the Document Objet Model itself. It is what
we have called decorating the DOM.

Parsing the templates and creating the object structure
The previously annotated template properties are retrieved from the
DOM and parsed, creating an object structure that represents the
templates defined in the style sheet: how many rows and columns

1 Actually, it uses a simplified variant of that pattern, since the different phases of
the rendering process (the filters) are combined into a single JavaScript program,
passing data each other directly, instead of being communicated by pipes. This is a
common technique in compiler construction.

ALMcss: A JavaScript Implementation of Template Layout Module

276

they have, what slots they contain, the position of each slot and how
many rows and columns they span, etcetera.

Computing the dimensions of templates and slots
During this phase, for each template, the dimensions of their slots
and the template itself are computed, according to the rules defined
by the Template Layout Module that were described in a previous
chapter.

Positioning the elements into slots
The final stage consists on actually moving each template positioned
element into the appropriate slot. Templates and slots are absolute
positioned according to the dimensions calculated in the previous
step and they are rendered by the browser.

The four phases are shown in figure 6, which depicts the overall ar-
chitecture of the prototype. Following sections describe the design
of each phase in more detail.

PParsing the Starsing the Style Sheetyle Sheet

In this first stage, all the style rules applied to the document must
be parsed. This is needed to retrieve the style declarations that use
the properties and values defined by the Template Layout Module.
Although it reuses the existing properties display and position,
they are augmented with new values specific of the Template Lay-
out Module, and for this reason they can not be accessed through
the DOM, because these new values make such declarations illegal1.
Therefore, all the styles applied to the document must be manually
fetched and then parsed to retrieve only those declarations in which
we are interested: template definitions, elements positioned into a

1 The exception to the stated above is Microsoft Internet Explorer 6, which do return
the value of any property for which it is asked, even if it does not know such prop-
erty or its associated value. In my opinion, it would be desirable to standardise this
behaviour, because it simplifies enormously the task of using JavaScript to add ex-
perimental support to new CSS properties, something that, if I am not wrong in my
prediction, will become more and more common.

Design of the Prototype

277

Figure 6. ALMcss architecture consists on four sequential phases that implement the rendering process.

ALMcss: A JavaScript Implementation of Template Layout Module

278

slot of some template, and, finally, those vertical-align properties
that affect to some slot. The process is outlined below:

1 First, style sheets are traversed. Note that this require to fetch the
CSS code of:

• Inline styles
• Styles embedded in the style element
• External style sheets

2 Once all the CSS rules have been compiled, the resultant code is
parsed, looking for the following declarations:

• a display property that has a template definition as a value
• a position property with a letter, @, or same value
• a vertical-align property

Obtaining the Style SheetsObtaining the CSS code stored in external files have not been an
easy task and it required a considerable amount of time until we
were able to reach a solution. It consists on using Ajax techniques
and request such external style sheets using the XMLHttpRequest

and ActiveXObject objects, depending on the browser. These ob-
jects have also been required to obtain the CSS code embedded in
the style element in the case of Opera browser, because for security
reasons it can not be accessed via the DOM innerHTML property as
with the rest browsers.

Parsing the CSS RulesOnce all the style rules that are applied to the document have
been retrieved and compiled in a single string of text, they have to be
parsed. Note that most rules will be simply ignored, since the proto-
type only cares for those declarations that make use of template pos-
itioning, namely:

• template definitions
• slot positioned elements
• vertical alignment
• ::slot(x) pseudo-elements

But there is another issue that must be solved: since the Template
Layout Module reuse existing CSS properties (display and posi-

tion), fetching the appropriate declarations is not so simple as to
just looking for such properties: if, for instance, a display: block

Design of the Prototype

279

function createXHR() {

var XHR = false;

try {

XHR= new ActiveXObject('Msxml2.XMLHTTP');

} catch(e1) {

try {

XHR=new ActiveXObject('Microsoft.XMLHTTP');

} catch (e2) {

XHR=false;

}

}

if (!XHR && (typeof XMLHttpRequest !='undefined' ||

window.XMLHttpRequest)) {

XHR=new XMLHttpRequest(); return XHR;

}

}

/* Reads an extern CSS file.

* @param filepath the path to the file to be read

* @return a string with contents of the file read

*/

function readCss(filepath) {

var output;

var request = createXHR();

request.open("get", filepath, false);

request.send(""); output = request.responseText;

Figure 7. Code for obtaining the CSS code stored in a external style sheet.

or a position: absolute declarations are found, they should not
be processed by the prototype, since they are normal CSS 2.1 prop-
erties that must be left to the browser.

It is needed, therefore, to parse the value applied to each of
these properties to determine if they belong to CSS 2.1 or are those

ALMcss: A JavaScript Implementation of Template Layout Module

280

defined in the CSS3 Template Module. This is done in the proto-
type using regular expressions, a common technique in JavaScript.

This process is done in the methods getPseudoCssRules and
getPseudoElement. The former obtains the rules that use some of
the new properties of the module and the latter gets the ::slot(x)

pseudo-elements.

DDececororaating theting the DOMDOM

Once all the style rules have been obtained and parsed, they must
be stored in some place, so that they can be accessed by other mod-
ules of the prototype. Making an analogy, we could say that we
need something like the symbol table of any compiler or interpreter
(Aho, Sethi &Ullman, 1990, pp. 443–454). Given the high number
of searches that are going to be done in subsequent phases of the
rendering process, some associative structure, like a hash map would
be desirable. Although JavaScript does not count with such type of
structure as is, its arrays can perfectly emulate it, since they allow to
use strings for the index of the array. Thus, it is possible to do things
like:

var array = new Array();

array['one'] = 'first';

array['two'] = 'second';

array['three'] = 'third';

var element = array['three']; // element === 'third'

In our case, the access key will be the selector of the style rule, for
which an object with information about the template properties of
such rule will be stored in the corresponding position of the array.

CrCreaeation of the Struction of the Structurturee

The next phase consists on processing the CSS rules that are using
some of the template positioning properties —which have been
previously stored in the DOM in the previous phase— to create the
object structure that represents the templates and their slots. Note
that this phase does not make any actual layout process: it simply

Design of the Prototype

281

recreates in memory the same structure of templates that have been
defined by the user in the style sheet.

This phase is divided into two steps:

1 First, the previously decorated DOM is parsed to identify all the
templates defined in the style sheet, and a structure of JavaScript
and DOM objects are created for representing such templates.

2 A second step actually moves the elements of the original HTML
document into their corresponding slot (one of the DOM objects
created in the previous step).

To understand how this process works, let us consider the following
template definition in CSS:

display: ". a b" /165px

"d e b" /auto

"d c c" /220px

(180px * 12em);

A template can be represented with a two-dimensional array. Once
the raw data of the template definition (the value of the display

property) have been dumped into the array, the next step is to
identify the slots that compound the template. First, a Grid object is
created and associated to the actual HTML element where the tem-
plate is defined (a DOM HTMLElement object). Then, the array that
contains the template definition is traversed, according to the fol-
lowing algorithm:

1 The template is traversed, starting in the position (1, 1) (first row,
first column), and following from left to right and from top to bottom
((1, 2), (1, 3), (2, 1)…).

2 A Slot object is created and assigned to the template (the Grid ob-
ject) with the current position.

3 While the slot identifier matches that of the last position, the
colspan or rowspan properties of the current slot are incremented
accordingly.

4 When a different slot identifier is found, a new Slot object is cre-
ated.

ALMcss: A JavaScript Implementation of Template Layout Module

282

As for the creation of the templates themselves, it deserves more
explanation, because each Grid object is not isolated, but it must
know its ancestors (in compiler construction terms, its scope). This is
needed for the case of nested templates. The pseudocode is as follows:

if (current DOM element is a template)

// Creates a new Grid object with no position and

// width and height equal to 0

var grid = new Grid()

grid.makeGrid() // Creates the slots of the template

if (the element does not have any ancestor)

add it to the list of containers

else

add it to the ancestor

end_if

end_if

// Parse the children of the current element passing

// this element as ancestor

foreach (child: element.getChildren())

child.parse(element)

end_foreach

The whole process is shown in the UML sequence diagram of figure
8, where the interactions at execution time among the different ob-
jects are outlined, for an imaginary template definition like "aaab",
"aaac"….

Creation of HTML
Elements for Slots

Another step consists on creating an HTML element for each
slot in the template. This is done through the DOM. These
HTMLElement nodes act as placeholders to contain the actual ele-
ments of the HTML document that are positioned into slots, which
will be done in the next phase of the rendering algorithm. Note that
this step would not be necessary if we were implementing the Tem-
plate Layout Module natively in a browser. In that case, boxes, and
not actual elements, would be created to represent the slots. But,
since this is not possible from JavaScript, the internal boxes of the
layout engine are emulated inserting “artificial” HTML elements in-
to the Document Object Model.

Design of the Prototype

283

Sequence diagram: Creation of grids and slots

Figure 8. UML sequence diagram showing a possible scenario of creation of a grid. First, the a slot is created, and
since it spans three columns, its colspan property is incremented. Then, in position (1,4) a new slot identifier is
found: b, which does not span any columns. After the first row is processed, comes the second one. Again, the a

letter in the position (2,1) of the template, so the rowspan property of the previously created slot must be incre-
mented. The process continues until the last position of the template definition has been reached.

Since this is the basis for what will come later, and a fundamental
piece in the design of ALMcss, it will be explained with a “real” ex-
ample. Let it be the HTML and CSS code of figure 9, where two
nested templates are created. Then, the result of this step for that ex-
ample is the creation of the structure of templates (grids) and slots
shown in figure 10, where each grid has a reference to the HTML

ALMcss: A JavaScript Implementation of Template Layout Module

284

Original HTML code CSS code

<div id="header">...</div>

<div id="content">

<div id="nav">...</div>

<div id="mainContent">...</div>

</div>

<div id="footer">...</div>

body {

display-model: "a"

"b"

"c";

}

#header { position: a; }

#content {

position: b;

display: "de";

}

#footer { position: c; }

Figure 9. The code on the left shows a portion of the original HTML document. On the right, the figure shows how
those HTML elements are positioned into two nested templates. Note that although the example, for clarity, uses
different letters for the nested template, this is not required, and implementations must be aware of the context of
the element (its ancestor templates, that is, the scope where it is defined).

element where it has been defined and each slot points to the new
created HTML element. At this point, the DOM for the current ex-
ample would be as follows:

<div id="header">...</div>

<div id="content">

<div id="nav">...</div>

<div id="mainContent">...</div>

<div id="tpl2_slot_d">...</div>

<div id="tpl2_slot_e">...</div>

</div>

<div id="footer">...</div>

<div id="tpl1_slot_a">...</div>

<div id="tpl1_slot_b">...</div>

<div id="tpl1_slot_c">...</div>

Moving Elements into
Slots

The final step of this phase consists on actually moving each element
in the original HTML document to the slot where it has been posi-

Design of the Prototype

285

Object structure of grids, slots, and HTML elements

Figure 10. When the second phase of the rendering algorithm ends, an object structure of grids, slots, and HTML
elements represents all the templates defined in the style sheets for a given document. The figure shows the object
diagram for the HTML and CSS code of figure 9, where green boxes represent the DOM nodes (HTMLElement ob-
jects) of the original HTML document (they are created by the browser when the document is loaded), whereas
blue ones are those HTMLElement that have been created and inserted in the DOM by ALMcss to represent each
slot. As it can be seen, each Slot object has an associated HTMLElement. It is in these artificially created elements
where the DOM nodes that represent actual content of the document will be moved in the last phase of the render-
ing process. As it can be seen, for grids no elements are created, but they are associated instead with the existing
DOM node corresponding to the element for which they are defined.

ALMcss: A JavaScript Implementation of Template Layout Module

286

Object structure after HTML elements have been moved into slots

Figure 11. The final object structure of this phase, one every positioned HTML element in the original document
have been moved, manipulating the DOM into their corresponding slot.

Design of the Prototype

287

tioned (that is, to one of the HTMLElement nodes inserted in the
DOM in the last step). The resultant structure of DOM (HTMLEle-
ment) and ALMcss (Grid and Slot) objects is shown in figure 11,
and is represented below:

<div id="tpl1_slot_a">

<div id="header">...</div>

</div>

<div id="tpl1_slot_b">

<div id="content">

<div id="tpl2_slot_d">

<div id="nav">...</div>

</div>

<div id="tpl2_slot_e">

<div id="mainContent">...</div>

</div>

</div>

</div>

<div id="tpl1_slot_c">

<div id="footer">...</div>

</div>

Class Structure for
Representing Templates

After finishing the creation of all the templates defined in the style
sheet, a structure of Grid and Slot objects is created in memory for
each template of the document. When modelling the representation
of the templates, the issue of nested templates arose. Basically, it
means that a template can contain not only slots, but also other tem-
plates inside. One of the premises of ALMcss (and of any piece of
software) is that it should have the conditional logic reduced to a
minimum. In particular, we did not want to have to check, every
time an element is rendered, whether it is a template (a grid) or a
slot. Fortunately, this is a well-known software design problem, as is
its solution: the Composite design pattern (Gamma, Helm, Johnson
& Vlissides, 1995, p. 163):

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of ob-
jects uniformly.

ALMcss: A JavaScript Implementation of Template Layout Module

288

Template structure in ALMcss

Figure 12. Class diagram showing the template structure as is represented in ALMcss.

Figure 12 shows all the classes that participate in the template rep-
resentation. Specifically, the Composite design pattern is implemen-
ted by Element, Slot, and Grid, which play the roles of Component,
Leaf, and Composite in the pattern, respectively. Note also how each
element (slot or grid) created by ALMcss keeps an one-to-one rela-
tionship with the actual DOM HTML element to which it belongs.

ResizingResizing

The third of the four phases of the rendering process is responsible
for computing the dimensions of the templates and slots created in
the preceding phase. This process has necessarily to be done in two
steps: first, the widths are computed, and then the heights. This is
so because of the flexible widths introduced in the Template Layout

Design of the Prototype

289

Module with the values intrinsic1 and * (asterisk), which were not
present in the first drafts of the module (only fixed widths were al-
lowed).

With these new values, the width of a slot may depend on its
contents, and so do its height, if a value of * or auto have been speci-
fied for some row. For this reason, the dimensions of the slots (and,
therefore, of the templates themselves) can not be longer computed
in a single-pass algorithm, but the two passes above mentioned are
needed.

For computing the size of the slots and templates, the Visitor
design pattern (Gamma et al., pp. 331–349) has been applied. Thus,
the following two visitors traverse the object structure of each tem-
plate (its slots and nested templates, if any), computing their widths
and heights, respectively:

• SizingWidthVisitor

• SizingHeightVisitor

PPositioningositioning

Once all the templates, slots, and their associated HTML elements,
have been created, inserted in the right place in the DOM, and their
dimensions have been computed, it is time to proceed to actually
distribute the elements on the screen. This is what the last phase of
the prototype does, the arrangement of the elements in their right
position on the screen. In other words, it is in this phase where the
actual layout of the document is carried on.

As it is natural, this phase relies on the values that have been
computed in the preceding phases, specially the dimensions of the
templates and slots. Therefore, this final procedure is relatively
simple, since it only have to access the DOM elements that define a
template and, for each, traverse the slots it contains, and read their

1 intrinsic has been actually removed from the current version of the specification
and replaced by fit-content, min-content, max-content, and minmax(p,q), but
they are not yet supported by ALMcss. Therefore, the explanation for the process
of computing the widths will refer to the old value of intrinsic. Anyway, it has
the same meaning than the current fit-content value, which has already been ex-
plained in the chapter about the Template Layout Module).

ALMcss: A JavaScript Implementation of Template Layout Module

290

Sizing and positioning visitors

Figure 13. A simplified UML sequence diagram which depicts the sizing and positioning phases of the rendering
process done by ALMcss. It is simplified because it does not show, for clarity reasons, how the actual object struc-
ture of a template is traversed by visitors.

dimensions. As the slots of each template are being traversed, their
horizontal and vertical offsets are computed based on the position
and size of the preceding slot. Finally, slots are absolute positioned us-
ing the coordinates computed in this phase.

Design of the Prototype

291

As it was done in the previous phase, positioning of the ele-
ments is implemented following the Visitor design pattern, by the
MovingVisitor class, as is depicted in figure 13, which shows a very
simplified sequence diagram of the last two phases of the algorithm.

Conclusions

In this chapter, the architecture and design of ALMcss has been
presented. Its development started four years ago, when the CSS3
Advanced Layout Module that was later renamed as Template Lay-
out Module was only a W3C “Members Only” Working Draft, and
the first version was available a few months later. It was therefore
the first implementation of the currently named Template Layout
Module, and it remained as the only available implementation until
the already mentioned recent work of Deveria (2009).

Although it is just a prototype, and it has several well-known
bugs, it has served to the following purposes:

• Having a earlier implementation, even a not fully compliant one,
has allowed to present the Template Layout Module using “real” ex-
amples and show them working in current browsers, thence helping
us promoting the benefits of the proposed solution among the web
designer community.

• It has showed that, if has been possible to implement the Template
Layout Module in a current browser using just JavaScript and the
DOM, without having access to the underlying layout engine, it
should be feasible to implement natively by browser vendors.

• As a marginal achievement, it has proved that JavaScript can be used
as a rapid prototyping tool for adding support for experimental CSS
modules to current browsers, even years before than those features
are natively implemented.

The design and coding style of our prototype, though, has errors.
Those errors were present in the first beta releases and in the final
version presented at the end of the research project (Acebal,
Rodríguez, García, Cueva & Labra, 2006), and, although it was later
refactored in the B.S. and master theses of Rodríguez (2007) and

ALMcss: A JavaScript Implementation of Template Layout Module

292

Cabal (2009), the pitfalls of the initial design have burdened the
development of the prototype since then. And its coding style still
needs to be improved to look more like JavaScript code and bene-
fit from some of its good features and expressiveness. All of that has
caused that solving the errors of the layout algorithms be a more
complicated task than it should be.

It must be noted, though, that when its development started,
none of the good JavaScript books that have appeared since then
(Flanagan, 2006; Keith, 2006 Adams et al., 2007; Yank & Adams,
2007; Keith, 2006; Crockford, 2008) existed, and the existing ones
did not focus on JavaScript as a programming language nor describe
in detail its prototype-based nature. At least, Zakas (2005) did a
decent job explaining some of the paradigms for creating objects
(pp. 90–98) and a whole chapter to inheritance in JavaScript (pp.
103–124), so we took it as a reference, as well as Crackford’s essays
and presentations (Crockford, n.d.). There also were the Keith’s
book on DOM scripting (2005), but it is oriented toward a much
superficial DOM programming than what had to be done in ALMc-
ss. Sambells and Gustafson’s work (2007) is much more related
with the DOM treatment that is done in ALMcss, but, again, it ap-
peared two years after the first version of our prototype had been re-
leased.

In addition, today widespread JavaScript frameworks and
toolkits like Prototype (2009), JQuery (2010), or YUI (Yahoo!,
2009) had not appeared or they were in their origins, and we only
had the already mentioned Edward’s library (Edwards, 2005) to be
taken as a reference. Nowadays it is very common to use JavaScript
for improving the CSS support of web browsers or adding experi-
mental features, but our prototype was one of the first examples of
this trend.

For all those reasons, I am redesigning and reimplementing the
prototype completely from the scratch, to take advantage of the ex-
perience gained from its prior development. The objective is not
only to have a prototype that is fully compliant with the Template
Layout Module specification, solving its current bugs and imple-
menting the lacking features, but to have it with a clean design that

Conclusions

293

allows me to experiment with possible new features not yet adop-
ted by the W3C CSS Working Group, or to use it as the basis for
further developments, like the possibility of dynamically change the
grid from the browser itself, etcetera.

In addition to ALMcss, other two prototypes developed for this
thesis have also been introduced in this chapter (Cabal, 2006). They
consist on a mobile layout engine and its desktop version, deve-
loped from the scratch in Java and C#, respectively. As it has been
shown in figure 5 on 269, they are also able to render relatively com-
plex grids defined with the Template Layout Module, so this option
will also be considered for further development, since the possibil-
ities offered by having a complete layout engine are enormous for
future research (for instance, enabling CSS debugging capabilities, al-
lowing the designer to arrange content dynamically, adding com-
plex layout features like non rectangular boxes, etcetera).

ALMcss: A JavaScript Implementation of Template Layout Module

294

A Visual Layout
Generator
There have traditionally been a lack of good visual
editors for CSS, specially for creating layouts.
Although sophisticated WYSIWYG tools exist, and
they have been improved to be “standard compliant”,
the code that they generate is still much more untidy
than its equivalent hand made.

Other tools, known as layout generators, are
appearing, but they are less more than a set of
predefined templates, customisables only to a certain
extent.

This chapter presents another prototype created for
this thesis which aims to prove that the proposed
solution simplifies so much the layout process in CSS
that layouts can even be created using a visual tool.

12

Introduction

Creating pure CSS layouts has been always burdened by the lack
of good visual editors. Although WYSIWYG tools exist since many
years ago, they have been always characterised by generating a pol-
luted code that is difficult to maintain. This is not a fault of the ex-
isting tools, but an evidence of the complexity of current CSS lay-
out mechanisms. It is very difficult, if not impossible, for an author-
ing tool to figure out how to translate the arrangement of elements
made by the user on the screen to the low-level layout mechanisms
of Cascading Style Sheets that have been reviewed in the first part
of this dissertation.

That is the reason why these tools used to rely on HTML table-
based layouts. Although the situation has substantially improved
with the most recent versions of tools like Adobe Dreamweaver1 or
Microsoft Expression Web2, and now they are able to generate pure
CSS layouts, they tend to abuse of absolute positioning, as well as
classitis and divitis (Zeldman & Marcotte, 2010, p. 160):

Even the best, most sophisticated visual web editors tend to cough up
needless classes like so many cold germs —primarily because they are
visual editors, not people. … Even when using as sophisticated a tool as
Adobe Dreamweaver or Microsoft Expression, you’ll want to edit its out-
put to avoid classitis and divitis.

Nevertheless, the Template Layout Module proposed in this thesis
as a solution to the problem of layout on the web makes possible to
create visual editors that are able to generate layouts without touch-
ing the underlying HTML document, creating a CSS code very sim-
ilar to what would have been coded by hand.

This chapter introduces another prototype developed for this
thesis: a visual layout generator that creates templates as defined in
the CSS3 Template Layout Module (Abella, 2009).

1 http://www.adobe.com/products/dreamweaver/
2 http://www.microsoft.com/Expression/products/Web_Overview.aspx

A Visual Layout Generator

296

Figure 1. Main screen of the
visual template generator. It
is made up of three panels:
the big left panel will contain
a visual representation of the
template that is being cre-
ated; on the right top panel a
tree representation of the
HTML will be shown, once
the document has been
opened; finally, on the right
bottom corner of the main
screen there are the controls
that allow the user to create
new templates and combin-
ing and dividing the slots of
the template.

User Interface

This section summarily describes the user interface of the prototype.
As it is depicted in figure 1, the main screen is divided into three
areas. These areas and their function are described below.

Template area
It is the big panel on the left, which will contain a visual representa-
tion of the template being generated: how many rows and columns
it has, and the slots that it contains, as well as the positions occupied
by each slot (that is, how many rows and columns it spans).

Document tree
On the right top area of the screen, a tree representation of the
HTML document will be shown, once it has been opened in the ed-
itor.

Template and slot properties
The final panel, on the right bottom of the screen, shows the prop-
erties of the template and allows to modify them: number of rows
and columns of the template, and which cells compound a slot. Cur-

Introduction

297

Figure 2. Once opened an
HTML document, its struc-
ture is shown as a tree in the

upper right panel of the main
window.

rently, the prototype does not allow to modify the height and width
of rows and columns (it is simply a student’s undergraduate thesis
developed as a proof of concept), although it would be very easy to
add this feature.

Usage Example

To illustrate how it works, I am going to recreate the same example
used on Chapter 6 to explain the One True Layout technique (see p.
122), and that was later reused on Chapter 10 (p. 246).

Opening theOpening the HTMLHTML DDocumenocumentt

The first step is to open the HTML with which we are to work. Once
loaded, its structure it is shown on the right upper panel (see figure
2).

CrCreaeating a New Tting a New Templaemplattee

Then, a new template must be created (figure 3). Once the number
of rows and heights have been specified, the prototype sketches the

A Visual Layout Generator

298

Figure 3. First, a new tem-
plate is created for the body

element.

Figure 4. After specifying the
number of rows and columns,
the prototype shows the
structure of the template on
the large panel on the left.

visual structure of the template. For example, for a 3 × 3 template,
the result is shown in figure 4.

Usage Example

299

Figure 5. The user can make
slots spans several rows and

columns, by combining or di-
viding them. In this figure,

the slot in the position (1, 1)
has been combined with that

of position (1, 2) to form a
single slot.

Figure 6. Template Layout
Module makes possible to ar-

range the content in the lay-
out simply by dragging ele-

ments from the HTML docu-
ment structure and dropping
them into the desired slot of

the template.

A Visual Layout Generator

300

DDefining Slotsefining Slots

Although the template has already been defined, and therefore its
slots created, the user can combine and divide them to change the
layout (this has not necessarily to be done now: the dimensions of
the slots —the number of rows and columns that they span— can
be changed at any moment during the layout process, even if con-
tent had been already added to the slot).

For my example, I am going to make that first and third rows
contain a single slot that spans three columns. Figure 5 shows how
the process of spanning a slot is.

ArrArranging the Canging the Cononttenent int intto Slotso Slots

Now begins the interesting part. Until now it has been not more
than a wizard similar to those of word processors for creating
tables1. It is time to actually arrange the content in the layout cre-
ated so far.

Thanks to the Template Layout Module, this is as simply as to
drag and drop an element from the tree on the right to the slot into
which it has to be positioned, as shown in figure 6. Once all the con-
tent has been laid out into the template, the final appearance of the
prototype is depicted in figure 7.

GGenereneraatted Ted Templaemplattee

Finally, the generated template can be saved as an external style
sheet, which content is shown in the listing of figure 8.

1 Nevertheless, there is nothing similar currently to create pure CSS layouts. Natur-
ally, as it has been mentioned in the introduction of this chapter, this is not merit
of the tool —otherwise, a mere prototype very easy to implement, although mer-
itorious for being an undergraduate thesis—, but of the Template Layout Module,
which, by making the layout explicit, also makes it very ease to automatise. Thus,
even though the prototype, in its current state, may be anything but a wizard…
how would we wish to have a similar wizard today for CSS layouts! Similar com-
mercial tools, like CSS Sculptor (WebAssist, 2009) or CSS Layout Magic (Project
Seven, n.d.) are much more limited than this prototype, and they are simple sets
of predefined templates of one, two, or three columns, that may been partially cus-
tomised (to include or not header and footer, changing the colours, etcetera): cur-
rent CSS layout capabilities do not allow more than that.

Usage Example

301

Figure 7. Once all the content
has been laid out into slots,

this is the appearance of the
template.

Conclusions

Although the tool presented in this chapter is extremely simple in
terms of functionality, I think that it serves well to the purpose of
exemplifying how easy will be to automatise the process of creating
layouts by visual editors and authoring tools.

A Visual Layout Generator

302

body {

display:

"aaa"

"bcd"

"eee";

}

body h1{

position: a;

}

div#orange {

position: b;

}

div#strawberry {

position: c;

}

div#lime {

position: d;

}

div#footer {

position: e;

}

Figure 8. The final template generated by the prototype.

Conclusions

303

Conclusions and
Further Research
The last chapter of this thesis summarises, in a
compressed form, which are, in my opinion, its main
contributions to the issue of layout on the web. First, a
very succinct review of the whole thesis is provided as
an introduction to the chapter. Finally, those areas
where I think that there is still much room for further
research are enumerated and briefly described.

13

Review

This dissertation started stating the hypothesis that CSS is not a lay-
out language. Notwithstanding the commonly accepted assumption
that Cascading Style Sheets allows the separation of presentation
and content, I argue that such separation is not currently possible.
Neither floats nor absolute positioning nor the rest of CSS proper-
ties that deal with the box and visual formatting models can be con-
sidered true layout mechanisms. As a consequence, the layout tends
to be dependent, to a greater or lesser extent, on the markup of the
document, which breaks the promised separation between present-
ation and content.

Furthermore, creating layouts with CSS is far from being an
easy task: floats, absolute and relative positioning, and margins, are
low-level layout mechanisms that operate at the level of elements.
Thus, the final layout is the result of the concurring interactions
among all the elements of the page, and the rules that govern this in-
teractions, as described in CSS 2.1 specification, are too complex.

This thesis has addressed the problem of layout on the web fol-
lowing a totally different approach to what has been done until now
in CSS: instead of creating the layout on a element basis, it is now
defined explicitly, at a high level of abstraction, using the same con-
cepts that graphic designers use in traditional printed media: rows
and columns, and the modules formed by combining several rows
and columns. This means a drastic change in the way that layout is
specified in Cascading Style Sheets.

The layouts thus created are not only much more easy to
achieve than with the traditional CSS layout mechanisms, but they
are also independent of the document structure: no matter the po-
sition that an element occupies in the document source code, it is
going to be able to be arranged into any position of the layout, thus
providing a sort of content reorder mechanism, which has proved
vital for obtaining a true separation between presentation and con-
tent, or, more specifically, between the structure of the document
and its visual layout.

Conclusions and Further Research

306

Major Contributions

This section summarises in a compressed form which are, in my
opinion, the main contributions of this thesis.

CSSCSS Is Not a LaIs Not a Layyout Languageout Language

The first contribution is the very hypothesis of this thesis, expressed
in any of its variants: “CSS is not a layout language”, “separation
between presentation and content is not currently possible on the
web”, “Cascading Style Sheets lack true layout mechanisms” “re-
design is not possible with CSS”… are all of them bold affirmations,
which go against established truth. Although it is true that some au-
thors have relieved against this assumption, it still is a quite politic-
ally incorrect statement. I believe that it has been, though, sufficiently
proven in this dissertation and, even if only for that —if I have
been able to demonstrate that more advanced layout mechanisms
are needed in CSS, be the solution proposed by this thesis or oth-
ers—, I think that this thesis would have been worth it.

CSSCSS Is a LIs a Loow-Lw-Levevel Languageel Language

I find particularly interesting the analogy made on Chapter 8 (190)
between Cascading Style Sheets and programming languages, at-
tending to the level of abstraction. I state that creating layouts with
CSS is like pretending to develop a complex piece of software in
Assembly code, and that more high-level layouts mechanisms are
needed.

ImplicitImplicit vs.vs. Explicit LaExplicit Layyoutout

Another original contribution of this thesis is the distinction made
between implicit and explicit layout. By implicit layout I designate
the way in which layouts are currently created in CSS, as it has been
mentioned in the introductory review of this chapter. Not only is
difficult to create the layout of a page with current CSS layout mech-
anisms: it is even more complicated to take an HTML document
and its style sheet and try to figure out what layout is being applied
just by reading the CSS. Conversely, I defend that a explicit manner
of defining the layout of a document is needed, where an author can

Review

307

say that the page has, for instance, three columns, a header, and a
footer, and that the middle column is liquid whereas the widths of
first and third columns are 13 em and 225 pixels, respectively, and
that he can then arrange the elements simply by saying what ele-
ments go into which of the previously defined regions.

CCascading Stascading Style Sheets Cyle Sheets Calls falls for a Distincor a Distinction Btion Betetwweeneen
PPrresenesentatation and Lation and Layyoutout

This is also an unconventional distinction made by this thesis: I have
distinguished the “layout” from the rest of stylistic effects. Usually
they are all of them included in the the term “presentation”, but,
while Cascading Style Sheets works reasonably well for most those
other stylistic effects, and it has done a great job taking most of the
presentational aspects out of HTML, the same is not true for lay-
out. By distinguishing the latter as a subset of what is commonly in-
tended by presentation I have made possible to focus on this specific
problem, both conceptually and then proposing a solution.

RequirRequiremenements ofts of CSSCSS LaLayyoutout

The first part of the dissertation has focused on analysing why Cas-
cading Style Sheets does not work for layout, and it has been
demonstrated with a few selected case studies. The problem state-
ment on Chapter 8 summarises those problems and sets the two re-
quirements that any proposal of layout addition to CSS should ful-
fil, to wit:

It has to provide a content reordering mechanism
That is, it must be completely independent on the order and struc-
ture of the document source code, and any element have to be able
to be laid out into any position, regardless where it has been defined
in the HTML. Naturally, this must be done without breaking the ar-
chitectural requirements of the web, namely, the ability of the page
to be rendered on any device, no matter its screen size or installed
fonts.

Conclusions and Further Research

308

Layout has to be explicitly defined
As it has already been explained, one of the main problems of how
layout is currently done in CSS is that it is only implicitly defined
by many low-level properties applied to single elements. Instead,
layout should be explicit: this page will have this and that regions,
with this specific dimensions —which must be able to be defined in
terms of other layout elements—, and here will go these pieces of
content, while those others will go into that region.

An InnoAn Innovvaativtive Lae Layyout Mechanism is Pout Mechanism is Prroposedoposed

This is probably the most obvious contribution made by this thesis:
the Template Layout Module that has been proposed on Chapter
9 as a solution to the problem of layout on web. However, as it
already was stated in that chapter, I can not pretend to appropriate
of others’ work: being this a solution developed within the W3C
CSS Working Group (W3C CSS-WG), it is, by definition, the result
of many others’ efforts, particularly Bert Bos, advisor of this thesis,
who had already have been defined the basic syntax and behaviour
of the formerly named Advanced Layout Module when I began this
thesis and joined the W3C CSS Working Group.

One of my own contributions to the current version of CSS3
Template Layout Module is the ability to apply style to the slot
themselves (the ::slot(x) pseudo-element). Others are less vis-
ible, but still important, such as defining case studies to analyse the
viability of our ideas for the module. For instance, I suggested that
the default height for rows should be auto (formerly named in-

trinsic in earlier versions of the draft), instead of “*”, as now is
reflected in the current working draft. In addition, by having deve-
loped a very early implementation of this module, I was able to con-
tribute to clarify some parts of the specification, which behaviour
was not very clear.

This thesis also purposes other original proposals that have not
yet been accepted to form part of the current working draft, to wit:

• Non-rectangular slots (see pp. 212 and 217)
• A detailed algorithm for computing heights (p. 203)

Major Contributions

309

• Removing the constraint on which properties can be applied to slots
(p. 219)

• Allowing elements to positioned into any template, regardless of
whether they are children or not (p. 200)

• Using percentages for the specifying the width of columns (p. 216)

This template mechanism fulfil the aforementioned requirements
for a layout proposal for CSS, to wit:

• Templates allow to define the layout in a explicit way
• Layout (that is, the visual structure of the document when it is

rendered) is independent on the content order and the structure
of HTML document

ALMCSSALMCSS: T: The Fhe First Implemenirst Implementatation of thetion of the CSS3CSS3 TTemplaemplattee
LaLayyout Moduleout Module

This thesis also presents ALMcss, which has been for more than
three years the only available implementation of the CSS3 Tem-
plate Layout Module. The first version of this prototype, which has
been thoroughly described in Chapter 11, was funded by the re-
search project Extensión del estándar CSS3 que permita la adaptación
multidispositivo de contenidos web (Acebal, Rodríguez, García, Cueva
& Labra, 2006), granted by CTIC Foundation. It was first presented
in the World Wide Web Conference (Bos & Acebal, 2006) and then
in a co-authored chapter on Transcending CSS (Clarke & Acebal,
2007). After that, it has been used by Clarke and Bos to demon-
strate the capabilities of the CSS3 Template Layout Module in nu-
merous seminars, workshops, and conferences all around the world.

It is a JavaScript prototype that allows any designer to use the
new template mechanism in any web page, simply by including a
reference to a JavaScript file in the HTML document: the proto-
type adds an upper layer over the browser layout engine that is able
to understand (although it is true that with certain bugs and lim-
itations) the properties and values of the new template-based lay-
out mechanism proposed in this thesis, and lay out the page accord-
ingly.

Conclusions and Further Research

310

The main achievement of the prototype is that, thanks to be im-
plemented in JavaScript, it works on most current web browsers,
which has allowed to see the proposed template layout extension in
action since the earliest phases of the CSS3 Template Layout Mod-
ule development. This has been useful not only for us, the W3C
CSS Working Group, and specially for Bert and me as editors of the
Working Draft, but also for showing the benefits of template layout
to web designers.

In addition, it has also proved that the proposed solution should
not be difficult to implement by browser vendors, if the Template
Layout Module is eventually accepted to form part of the future
CSS3 specification.

A VA Visual Tisual Tool fool for Gor Genereneraating Tting Templaemplatteses

In addition to ALMcss, another prototype has been developed for
this thesis, consisting on a visual tool for generating templates
(Abella, 2009). This has been an unplanned achievement of this
thesis: by fulfilling the aforementioned requisite of allowing the lay-
out to defined explicitly, the Template Layout Module makes pos-
sible for a visual tool to create layouts generating a CSS code as
clean and understandable as it had been coded by hand (and, of
course, without altering the HTML document).

I think that it is very significative of how different the approach
of the Template Layout Module is with respect traditional CSS
layout mechanisms (floats, absolute positioning, negative margins,
etcetera) that we have been able to automatise the layout creation
process in an undergraduate student thesis, something that no com-
mercial tool does. This is not a merit of Abella’s work over products
like Adobe Dreamweaver or Microsoft Expression Web, of course:
it is a merit of Template Layout Module over floats, absolute posi-
tioning, and the rest of properties currently used in CSS for layout.

It is simply not possible for a WYSIWYG tool to create layouts
using drag and drop but by means of absolute positioning, which
leads to the problems that have also been thoroughly discussed in
this dissertation. Other tools have appeared, sometimes as exten-
sions to these programs, as is the case of CSS Sculptor (WebAssist,

Major Contributions

311

2009) and CSS Layout Magic (Project Seven, n.d.) extensions for
Dreamweaver, but they are not more than a set of predefined tem-
plates, with a few customisable options. Conversely, the prototype
developed for this thesis takes advantage of the ease of Template
Layout Module for defining layout and makes possible to define a
layout made of any number of rows, columns, and slots. Further-
more, it allows to arrange the content into the slots by drag and
drop.

Of course, it is not more than a prototype, but I think that it is a
good proof of concept of the tools that may appear in a near future
if the Template Layout Module becomes a W3C Recommendation.

Publications and other Stuff

This section enumerates the publications originated until now by
this thesis, research projects, received awards, and related under-
graduate theses carried out under my supervision.

PPublicaublicationstions

This thesis has led to the following publications:

• Co-editor of W3C CSS3 Template Layout Module (accepted on 19th
August 2009)

• Bos, B., & Acebal, C. (2006, May). CSS Advanced Layout. In B.
Bos (Chair), Style and layout: Key successes to create interoper-
able web pages. Session conducted at the 15th International World
Wide Web Conference (WWW’06), Edinburgh, Scotland. Slides
available at http://www.w3.org/2006/05/w3c-track.html

• Clarke, A., & Acebal, C. (2007). Advanced Layout. In Transcending
CSS: The fine art of web design (pp. 345–357) Berkeley, CA: New
Riders.

ResearResearch Pch Prrojecojectsts

• Extensión del estándar CSS3 que permita la adaptación multidispositivo de
contenidos web. Research project funded by CTIC Foundation (pro-
ject code FUO-EM-115-05) (Acebal, Rodríguez, García, Cueva &
Labra, 2006)

Conclusions and Further Research

312

http://www.w3.org/Talks/2006/0526-CSS-WWW2006/
http://www.w3.org/2006/05/w3c-track.html

AAwwarardsds

The aforementioned research project, and the prototype that was
built for it, was the award-winner research project in the I Premios
Sociedad Información en Asturias (First Asturias Information Society
Awards), promoted by the regional government of the Principality
of Asturias.

StudenStudents’ Wts’ Worksorks

The following students’ undergraduate theses have been supervised
by me as part of the research conducted for this thesis:

• Cabal, E. J. (2006). Adaptación de los estándares web para dispositivos
móviles. (Undergraduate thesis, Escuela Universitaria de Ingeniería
Técnica en Informática de Oviedo (EUITIO), University of
Oviedo).

• Rodríguez, M. (2007). Implementación de un prototipo visualizador
multinavegador para dar soporte al modelo de maquetación avanzado
CSS3. (Undergraduate thesis, Escuela Universitaria de Ingeniería
Técnica en Informática de Gijón (EUITIG), University of
Oviedo).

• Cabal, E. J. (2009). Extensión en JavaScript que incorpora el Advanced
Layout Module de CSS3 a los navegadores web actuales. (Master’s thesis,
Escuela Politécnica Superior de Ingenieros de Gijón (EPSIG),
University of Oviedo).

• Abella, P. (2009). Generador de plantillas del módulo Template Layout
de CSS3. (Undergraduate thesis, Escuela Universitaria de Ingeniería
Técnica en Informática de Oviedo (EUITIO), University of
Oviedo).

Further Research

MorMore Lae Layyout Improut Improovvemenementsts

The Template Layout Module does not pretend to be the solution
to every imaginable layout problem, neither in its current form, nor
even assuming that all my proposals were eventually accepted. Lay-
out, as it has been reviewed on Chapter 2, is a not so easy to define

Publications and other Stuff

313

concept. It is the perceived result of a complex interaction among
many factors, such as hierarchy, alignment, typography, colours,
shapes, etcetera. Thus, it is clear that a diagonal text influences the
layout differently than an horizontal or vertical one, for example.
The Template Layout Module do not address that kind of trans-
formations, the same way that it do not deal with rounded boxes or
gradients. All of that may —or may not— need to be added to CSS
to achieve the goal pursued by this thesis: a true separation between
presentation and content.

For such research, I suggest to take as an inspiration not only
other layout languages but, above all, desktop publishing tools. It is true
that the web is a very different and more complex scenario than
printed media, like magazines, newspapers, books, brochures, etcet-
era, because web design will always mean device independency, and
there are many factors that are out of the designer’s control. But if
graphic designers are able to do any design using these tools, we
should ask themselves which of their features are missing in Cascad-
ing Style Sheets, and whether they can —and it has sense— be im-
plemented or not.

Some of such features that in my opinion are worth to be con-
sidered are, for example:

• Allowing the content to flow between whatever two elements
• Allowing the content to fit their containing box
• Substituting rectangular boxes by any shape containing blocks (for

example, defined with SVG)

In addition, some others approaches to CSS and, more specifically,
to how layout can be specified in CSS are possible (for example,
adding constraints to the language).

CSSCSS DDebuggersebuggers

Today, CSS development is much a trial and error process. Few
people fully understand the specification. Having a tool that allowed
us to debug step by step a style sheet would be an invaluable help,
both for beginners and experienced users, who thus would be able
to find out, for instance, why the browser insists on keeping that

Conclusions and Further Research

314

separation between two elements when a zero margin is being speci-
fied to both elements, or why that float is being positioned there and
not here as the author pretended.

One of the causes of more frustration when formatting with
CSS is the lack of debugging tools. Some tools, like Web Developer
Toolbar (Pederick, 2009), or Firebug (“Firebug”, 2010) exist from
several years ago, and others have recently appeared: Opera
Dragonfly (Mills, 2008), Safari Web Inspector (Apple, 2010), and
IE8 Developer Tools (Microsoft, 2009d). Although all of them are
very useful tools for web designers, they are inspectors: there is still
nothing like a true debugger. It is also curious that all of those tools
are extensions of web browsers: there is no reason for such integra-
tion. I predict that some professional CSS debugger, probably deve-
loped as a stand alone application, will appear sooner or later.

Applying DApplying Design Pesign Paatttterns and other Objecerns and other Object Orient Orientted Bed Bestest
PPrracactictices tes to Lao Layyout Engine Cout Engine Construconstructiontion

That the development of a layout engine, as it is a web browser, is a
very complex process is something that nobody has ever disputed.
However, from the review of open source browsers Firefox and We-
bKit I conclude that it is not as complex as it seems when one looks
how their layout engines are designed and implemented, and that
they could benefit from a more elegant object oriented design by
means of design patterns, refactoring, automated unit testing, and
other best practices in software design. Of course, a more detailed
review of their code would be needed to be able to sustain that af-
firmation, and that is the reason why it is only pointed here as a sug-
gestion of further research, since it has not been demonstrated in
the body of the dissertation (and it is something that it is out of the
scope of this thesis indeed).

Further Research

315

Conclusiones e
investigación futura
El último capítulo de esta tesis resume las que en mi
opinión son las sus principales aportaciones al
problema de la maquetación en la web.
Primeramente, y como introducción al capítulo, se
ofrece un repaso sumarísimo de la tesis completa,
antes de pasar a las aportaciones en sí. Por último, se
enumeran y describen brevemente aquellas áreas que
han quedado abiertas y, a mi juicio, son merecedoras
de más investigación.

13

Repaso

Esta disertación comenzaba estableciendo la hipótesis de que CSS
no es un lenguaje de maquetación. A pesar de la asunción común-
mente aceptada de que Cascading Style Sheets permite la separa-
ción de presentación y contenido, en mi opinión dicha separación
no es posible en la actualidad. Ni los elementos flotantes ni el po-
sicionamiento absoluto, o el resto de propiedades del lenguaje que
tratan con el modelo de cajas y de formato visual, pueden conside-
rarse verdaderos mecanismos de maquetación. Como resultado, la
maquetación tiende a ser dependiente, en mayor o menor medida,
del marcado del documento, lo que invalida la prometida separa-
ción entre presentación y contenido.

Además, maquetar con CSS dista mucho de ser una tarea fácil:
los floats, el posicionamiento, tanto absoluto como relativo, y los
márgenes, son mecanismos de bajo nivel, que operan sobre los ele-
mentos individuales. De este modo, la estructura visual final de la
página no es sino el resultado de las complejas interacciones que
acontecen entre las citadas propiedades aplicadas a cada elemento
de la página, de acuerdo con las reglas que se definen en CSS 2.1, re-
glas éstas que pueden llegar a ser, en ocasiones, muy complejas.

Esta tesis ha abordado el problema de la maquetación en la web
siguiendo un enfoque totalmente distinto a como se ha venido hac-
iendo hasta ahora en CSS: en vez de especificar la estructura visual
de la página manipulando las propiedades de cada elemento indivi-
dual, ésta se define ahora de manera explícita, a un nivel de abstrac-
ción más alto, que utiliza los mismos conceptos a los que los dise-
ñadores están acostumbrados en el diseño gráfico tradicional, en los
medios impresos: filas y columnas, así como los módulos formados
por la combinación de varias filas y columnas. Esto representa un
cambio drástico en el modo de maquetar con CSS.

Los diseños así creados no sólo son mucho más fáciles de con-
seguir que con los mecanismos tradicionales de CSS, sino que tam-
bién son independientes de la estructura del documento: no impor-
ta cuál sea la posición de un elemento en el código fuente del docu-

Conclusiones e investigación futura

318

mento, éste podrá ubicarse en cualquier lugar de página, proporcio-
nando así una suerte de mecanismo de reordenación del conteni-
do, que esta tesis ha demostrado que es una característica esencial
para obtener una verdadera separación de presentación y conteni-
do o, más concretamente, entre la estructura del documento y su je-
rarquía visual.

Principales aportaciones

En este apartado se resumen cuáles son las principales aportaciones
de esta tesis.

CSSCSS no es un lenguaje de maquetaciónno es un lenguaje de maquetación

La primera aportación es la propia hipótesis de la tesis, expresada
en cualquiera de sus múltiples variantes: “CSS no es un lenguaje de
maquetación”, “la separación de presentación y contenido no es po-
sible actualmente en la web”, “las hojas de estilo en cascada carecen
de verdaderos mecanismos de maquetación” “no es posible redise-
ñar con CSS”… son todas ellas afirmaciones arriesgadas, que van en
contra de la verdad establecida. Si bien es cierto que algunos auto-
res ya se habían rebelado contra está asunción, aún es una afirmación
que podríamos calificar de políticamente incorrecta. No obstante, en
mi opinión ha sido suficientemente probada en esta tesis y, aunque
sólo fuera por ello —es decir, si verdaderamente he sido capaz de
demostrar que son necesarios mecanismos de posicionamiento más
avanzados en CSS, ya sean los de la solución propuesta de esta tesis
u otros—, creo que esta tesis ya habría valido la pena.

CSSCSS es un lenguaje de bajo nives un lenguaje de bajo nivelel

Otra aportación que considero particularmente interesante es la
comparación hecha en el capítulo 8 (p. 190) entre Cascading Style
Sheets y los lenguajes de programación, atendiendo al nivel de abs-
tracción. Sostengo que maquetar con CSS es como pretender crear
una aplicación compleja en código ensamblador, y que es preciso
dotar al lenguaje de hojas de estilo con mecanismos de posicionam-
iento más avanzados.

Repaso

319

Maquetación implícita frMaquetación implícita frenentte a maquetación explícitae a maquetación explícita

Otra aportación original de esta tesis es la distinción hecha entre
maquetación implícita y explícita. Por maquetación implícita entien-
do el modo en que ésta se define hoy día en CSS, como ya se ha re-
petido en el repaso introductorio de este capítulo. No sólo es difí-
cil crear la maquetación de una página con los mecanismos actuales
de maquetación de CSS: es incluso más complicado tratar de averi-
guar, a partir de un documento HTML y su hoja de estilo asociada,
qué maquetación está siendo aplicada. Por el contrario, en esta te-
sis defiendo que una es necesario un mecanismo para definir la ma-
quetación de manera explícita, donde el autor pueda decir que una
página tiene, por ejemplo, tres columnas, una cabecera y un pie de
página, y que la columna del medio es líquida mientras que las de
los lados tienen un ancho de 13 em y 225 píxeles, respectivamente,
y que a continuación pueda ubicar los elementos a su antojo simple-
mente indicando qué elementos van en cuáles de las áreas definidas
previamente.

CCascading Stascading Style Sheets ryle Sheets requierequiere distinguir la maquetación dele distinguir la maquetación del
rrestesto de aspeco de aspecttos de pros de presenesentacióntación

Ésta es otra distinción poco convencional hecha por esta tesis: en
ella distingo la “maquetación” del resto de información estilística de
la página. Normalmente dichos conceptos se encuentran engloba-
dos en el término “presentación” pero, mientras que las hojas de es-
tilo han funcionado razonablemente bien para muchos de esos otros
aspectos, realizando una gran labor en lo que se refiere a sacar la ma-
yoría de los aspectos de presentación fuera del HTML, no se puede
decir lo mismo de la maquetación de la página. Gracias a diferenciar
esta última como un subconjunto de lo que comúnmente se entien-
de por presentación he hecho posible centrarme en ese problema en
concreto, tanto desde un punto de vista meramente conceptual, co-
mo a la hora de proponer una solución.

RequisitRequisitos paros para un sista un sistema de maquetación enema de maquetación en CSSCSS

La primera parte de la memoria de la tesis se ha centrado en analizar
por qué las hojas de estilo no son adecuadas para maquetar, y lo ha

Conclusiones e investigación futura

320

demostrado a través de unos pocos casos de estudio seleccionados.
Los problemas identificados se describieron en el capítulo 8, don-
de también se definieron los dos principales requisitos que cualqu-
ier propuesta de adición a CSS debería satisfacer. Dichos requisitos
son los siguientes:

Debe proporcionar un mecanismo de reordenación del contenido
Es decir, debe ser completamente independiente del orden y estruc-
tura del código fuente del documento, de modo que cualquier ele-
mento pueda ser colocado en cualquier posición de la página, no im-
porta dónde se haya definido éste en el HTML. Naturalmente, esto
debe lograrse cumpliendo a la vez los requisitos arquitectónicos de
la web, es decir, la capacidad de que la página pueda verse en cual-
quier dispositivo, sean cuales sean sus características, tales como el
tamaño de la pantalla o las fuentes instaladas.

La maquetación debe ser explícita
Como ya se ha explicado, uno de los principales problemas deriva-
dos de cómo se especifica la maquetación de una página hoy día en
CSS es que ésta está implícitamente definida como resultado de to-
das las propiedades de bajo nivel aplicadas a los elementos individ-
uales. En vez de eso, la maquetación debería ser explícita: esta pági-
na tendrá esta y aquella regiones, cada una de las cuales tendrá estas
dimensiones —que deben poder ser definidas en relación con las de
otros elementos de la página—, y aquí irán estas partes del conteni-
do, mientras que estas otras irán en aquella región.

SSe pre propone un innoopone un innovvador sistador sistema de maquetaciónema de maquetación

Ésta es probablemente la aportación más obvia de esta tesis: el Tem-
plate Layout Module propuesto en el capítulo 9 como solución al
problema de la maquetación en la web. Sin embargo, como ya se
dijo en aquel capítulo, no puedo pretender apropiarme del trabajo
de otros: siendo ésta una solución desarrollada en el seno del W3C
CSS Working Group (W3C CSS-WG), dicha propuesta es, por defi-
nición, el resultado del esfuerzo de muchas otras personas. Especial-
mente de Bert Bos, uno de los directores de esta tesis, quien ya había

Principales aportaciones

321

definido la sintaxis y comportamiento básicos del módulo (por aq-
uel entonces denominado Advanced Layout) cuando comencé esta
tesis y me uní al W3C CSS Working Group.

Una de mis contribuciones a la versión actual del CSS3 Templa-
te Layout Module es la capacidad de aplicar estilo a los propios ele-
mentos (el pseudo-elemento ::slot(x)). Otras son probablemen-
te menos visibles, pero aun así importantes. Por ejemplo, en su día
sugerí que la altura predeterminada de las filas debería tener el valor
auto (entonces denominado intrinsic), en vez de asterisco (“*”),
propuesta aceptada y que aparece ahora recogida en la versión act-
ual del borrador de la especificación. Además, durante el desarrollo
de nuestro prototipo, ALMcss, pude contribuir a clarificar algunas
partes de la especificación cuyo significado no estaba claro.

En la tesis también se proponen otras adiciones o cambios al
módulo que aún no han sido aceptadas para formar parte de la espe-
cificación, a saber:

• Regiones no rectangulares (ver pp. 212 y 217)
• Un algoritmo detallado para el cálculo de la altura (p. 203)
• Eliminar las restricciones acerca de qué propiedades pueden ser

aplicadas a los slots (p. 219)
• Permitir que los elementos puedan posicionarse en cualquier plan-

tilla, independientemente de si son descendientes de ella o no (p.
200)

• Usar porcentajes para especificar el ancho de las columnas (p. 216)

El mecanismo basado en plantillas que se propone en esta tesis sa-
tisface los requisitos previamente mencionados para un sistema de
maquetación en CSS, a saber:

• Las plantillas permiten definir la maquetación de forma explícita
• La maquetación (esto es, la estructura visual del documento) es in-

dependiente del orden del contenido y de la estructura del docu-
mento HTML.

Conclusiones e investigación futura

322

ALMCSSALMCSS: La primer: La primera implemena implementación deltación del CSS3CSS3 TTemplaemplatte Lae Layyoutout
ModuleModule

Esta tesis también presenta ALMcss, la que ha sido durante más de
tres años la única implementación disponible del CSS3 Template
Layout Module. La primera versión del prototipo, el cual ha sido
concienzudamente descrito en el capítulo 11, fue financiada por el
proyecto de investigación Extensión del estándar CSS3 que permita la
adaptación multidispositivo de contenidos web (Acebal, Rodríguez, Gar-
cía, Cueva & Labra, 2006), concedido por la Fundación CTIC. El
prototipo se presentó por vez primera en la World Wide Web Conferen-
ce (Bos & Acebal, 2006) y más tarde en un capítulo del libro Trans-
cending CSS (Clarke & Acebal, 2007), en el que tuve el honor de par-
ticipar como coautor de dicho capítulo. Después, el prototipo ha si-
do usado por Ckarke y por Bos para demostrar las capacidades del
CSS3 Template Layout Module en numerosos seminarios, talleres
prácticos y congresos de todo el mundo.

Se trata de un prototipo en JavaScript que permite que cualqu-
ier diseño utilice las nuevas capacidades de maquetación en cualqu-
ier página web, con tan sólo incluir una referencia al fichero JavaS-
cript en el documento HTML: el prototipo añade una capa extra el
motor de visualización del navegador que es capaz de entender (si
bien es cierto que, en su versión actual, con ciertas limitaciones y
errores) las propiedades y valores de la solución propuesta, y visua-
liza la página correctamente.

El principal logro del prototipo es que, al estar implementado
en JavaScript, funciona en la mayoría de los navegadores actuales,
lo que ha permitido ver la solución propuesta en acción ya desde
las primeras fases de desarrollo del módulo. Esto ha resultado útil
no sólo para nosotros, el W3C CSS Working Group, y en particular
Bert y yo como editores del Working Draft, sino también para mos-
trar sus ventajas a los diseñadores web.

Por último, el prototipo ha permitido probar que la solución
propuesta no debería ser difícil de implementar por los fabricantes
de navegadores, en caso de que el Template Layout Module sea fi-
nalmente aceptado para formar parte de la futura especificación de
CSS3.

Principales aportaciones

323

Una herrUna herramienamienta visual parta visual para genera generar planar plantillastillas

Además de ALMcss, se ha desarrollado otro prototipo para esta te-
sis: una herramienta visual para la generación de plantillas (Abella,
2009). Éste ha sido, de hecho, un logro añadido de esta tesis, no pre-
visto inicialmente: gracias a satisfacer el requisito previamente men-
cionado de permitir que la maquetación se defina de forma explícita,
el Template Layout Module posibilita también el desarrollo de he-
rramientas visuales para crear la maquetación de la página, generan-
do un código CSS tan limpio y comprensible como el que hubiera
podido codificarse a mano (y, por supuesto, sin alterar el documen-
to HTML).

Pienso que es bastante significativo del enfoque tan diferente
que el Template Layout Module sigue con respecto a los mecanis-
mos tradicionales de CSS (floats, posicionamiento absoluto, márge-
nes negativos, etcétera) el hecho de que se haya podido automatizar
el proceso de creación de la maquetación en un proyecto fin de ca-
rrera desarrollado por un estudiante, algo que ninguna herramienta
comercial es capaz de hacer hoy día. Esto no significa, naturalmente,
que el trabajo de Abella mejore a productos como Adobe Dreamwe-
aver o Microsoft Expression Web, sino que representa un mérito del
Template Layout Module sobre los floats, posicionamiento absolu-
to, y el resto de propiedades actuales de CSS para maquetar.

Simplemente es imposible para una herramienta WYSIWYG
crear la maquetación de una página de forma gráfica, arrastrando y
soltando elementos, si no es mediante posicionamiento absoluto, lo
que conlleva los problemas que han sido profusamente descritos en
esta tesis. Si bien es cierto que han aparecido ciertas herramientas
que abordan este problema, a veces como extensiones de esos mis-
mo programas mencionados en el párrafo anterior, como es el ca-
so de las extensiones para Dreamweaver CSS Sculptor (WebAssist,
2009) y CSS Layout Magic (Project Seven, n.d.) éstas no son más
que una serie de plantillas predefinidas, con más o menos opciones
configurables. Por el contrario, el prototipo desarrollado para la te-
sis se aprovecha de las facilidades del Template Layout Module pa-
ra maquetar y permite crear un diseño de cualquier número de filas,
columnas, y slots. Más aún, permite ubicar el contenido en dichos

Conclusiones e investigación futura

324

slots simplemente arrastrando y soltando los elementos deseados en
ellos.

Naturalmente, no se trata más que de un prototipo, pero pienso
que constituye una prueba de concepto de las herramientas que apa-
recerán en un futuro próximo si el Template Layout Module se con-
vierte en una especificación oficial del W3C.

Publicaciones y otros logros

En esta sección se enumeran las publicaciones a las que ha dado lu-
gar hasta ahora esta tesis, los proyectos de investigación obtenidos,
así como los premios recibidos y los proyectos fin de carrera involu-
crados en su realización.

PPublicacionesublicaciones

La tesis ha dado lugar a las siguientes publicaciones:

• Fui nombrado coeditor del W3C CSS3 Template Layout Module (el
19 de agosto de 2009)

• Bos, B., & Acebal, C. (2006, May). CSS Advanced Layout. In B.
Bos (Chair), Style and layout: Key successes to create interopera-
ble web pages. Session conducted at the 15th International World
Wide Web Conference (WWW’06), Edinburgh, Scotland. Slides
available at http://www.w3.org/2006/05/w3c-track.html

• Clarke, A., & Acebal, C. (2007). Advanced Layout. In Transcending
CSS: The fine art of web design (pp. 345–357) Berkeley, CA: New Ri-
ders.

PPrrooyyececttos de inos de invvestigaciónestigación

• Extensión del estándar CSS3 que permita la adaptación multidispositivo de
contenidos web. Proyecto de investigación otorgado por la Fundación
CTIC (código de proyecto FUO-EM-115-05) (Acebal, Rodríguez,
García, Cueva & Labra, 2006)

PPrremiosemios

Dicho proyecto de investigación, y el prototipo desarrollado para él,
resultó ganador del primer premio, en el apartado de investigación,

Principales aportaciones

325

http://www.w3.org/Talks/2006/0526-CSS-WWW2006/
http://www.w3.org/2006/05/w3c-track.html

de los I Premios Sociedad Información en Asturias, concedido por el go-
bierno regional del Principado de Asturias.

PPrrooyyececttos fin de carros fin de carrereraa

Los siguientes proyectos fin de carrera dirigidos por mí forman par-
te de la investigación realizada para esta tesis:

• Cabal, E. J. (2006). Adaptación de los estándares web para dispositivos
móviles. (Undergraduate thesis, Escuela Universitaria de Ingeniería
Técnica en Informática de Oviedo (EUITIO), University of Ovie-
do).

• Rodríguez, M. (2007). Implementación de un prototipo visualizador
multinavegador para dar soporte al modelo de maquetación avanzado
CSS3. (Undergraduate thesis, Escuela Universitaria de Ingeniería
Técnica en Informática de Gijón (EUITIG), University of Ovie-
do).

• Cabal, E. J. (2009). Extensión en JavaScript que incorpora el Advanced
Layout Module de CSS3 a los navegadores web actuales. (Master’s thesis,
Escuela Politécnica Superior de Ingenieros de Gijón (EPSIG),
University of Oviedo).

• Abella, P. (2009). Generador de plantillas del módulo Template Layout
de CSS3. (Undergraduate thesis, Escuela Universitaria de Ingeniería
Técnica en Informática de Oviedo (EUITIO), University of Ovie-
do).

Investigación futura

Más mejorMás mejoras de maquetaciónas de maquetación

El Template Layout Module no pretende ser la solución definitiva
a cualquier problema de maquetación inimaginable, ni en su estado
actual ni siquiera suponiendo que se aceptaran todas mis propues-
tas. La disposición visual de un documento, como se estudió en el
capítulo 2, no es un concepto sencillo de definir, sino que se trata
del resultado de una compleja interacción de muchos otros factores,
como la jerarquía, alineación, tipografía, formas y colores, etcétera.
Así, es evidente de un texto dispuesto en diagonal ejerce una infl-

Conclusiones e investigación futura

326

uencia sobre la jerarquía visual del documento diferente de si el mis-
mo texto se colocase horizontal o verticalmente, por ejemplo. Sin
embargo, el Template Layout Module no aborda este tipo de trans-
formaciones, de la misma manera que no trata con otras cuestiones
como bordes redondeados o degradados. Es posible que cuestiones
como éstas deban ser añadidas a CSS para lograr el objetivo perse-
guido por esta tesis, a saber: una separación total entre la presenta-
ción y el contenido.

Para dicha investigación posterior, mi sugerencia es que debe-
rían tomarse como inspiración no sólo otros lenguajes de maqueta-
ción, sino, sobre todo, las herramientas de publicación. Es cierto que la
web es un medio muy diferente y representa un escenario más com-
plejo que el de los tradicionales medios impresos, como libros, re-
vistas, periódicos o folletos, dado que el diseño web siempre llevará
asociada la independencia de dispositivos, y hay muchos factores que, a
diferencia del medio impreso, están fuera del control del diseñador.
Pero si los diseñadores gráficos han sido capaces de lograr cualqu-
ier tipo de diseño en dichos medios, empleando esas herramientas,
deberíamos preguntarnos cuáles de sus características no se encuen-
tran en Cascading Style Sheets, si pueden ser implementadas o no,
y si tiene sentido hacerlo.

Algunas de dichas características que en mi opinión deberían
ser consideradas para su posible inclusión en CSS son, por ejemplo:

• Permitir que el contenido fluya entre dos elementos cualesquiera
• Permitir que el contenido pueda adaptarse a su caja contenedora, en

vez de únicamente a la inversa como sucede ahora
• Eliminar la restricción de que las cajas sean siempre rectangulares, y

que puedan tener cualquier forma (por ejemplo, definiéndolas me-
diante SVG)

Por último, también son posibles otros planteamientos del proble-
ma de la maquetación en CSS (por ejemplo, añadiendo restricciones
al lenguaje).

Investigación futura

327

DDepurepuradoradoreses CSSCSS

Hoy día, el desarrollo con CSS tiene mucho de prueba y error. Po-
cos desarrolladores conocen y son capaces de comprender la espe-
cificación al completo. Si pudiéramos disponer de herramientas que
permitiesen depurar una hoja de estilo paso a paso, sería una gran
ayuda, tanto para principiantes como para usuarios expertos. De
este modo, podríamos averiguar muy fácilmente, por ejemplo, por
qué el navegador “se empeña” en dejar esa separación entre dos ele-
mentos cuando se ha especificado un margen de cero para ambos,
o porque un elemento flotante se coloca ahí en vez de aquí (donde
pretendiese el autor).

Así pues, una de las causas de mayor frustración cuando diseña-
mos con CSS es la falta de este tipo de herramientas de depuración.
Desde hace ya unos cuantos años, existen algunas herramientas, co-
mo la Web Developer Toolbar (Pederick, 2009) o Firebug (“Fire-
bug”, 2010), y otras han aparecido recientemente: Opera Dragonfly
(Mills, 2008), Safari Web Inspector (Apple, 2010) e IE8 Developer
Tools (Microsoft, 2009d). Si bien todas ellas son muy útiles para los
diseñadores web, no son más que inspectores: todavía no existe na-
da parecido a un verdadero depurador. También resulta curioso que
todas esas herramientas sean extensiones de navegadores web: no
hay razón alguna para dicha integración. Mi predicción es que algún
depurador profesional de CSS, probablemente desarrollado como
una aplicación independiente del navegador, aparecerá tarde o tem-
prano.

Aplicar paAplicar patrtrones de diseño y otrones de diseño y otras buenas prácas buenas prácticas orienticas orientadastadas
a objeta objetos a la cos a la construcción de motonstrucción de motorores de res de renderizadoenderizado

Que el desarrollo de un motor de renderizado, como es un navega-
dor web, es una tarea compleja, es algo que nadie pone en duda. No
obstante, del análisis de los navegadores de código abierto Firefox
y WebKit desarrollado para el proyecto de investigación que dio lu-
gar al desarrollo del prototipo de esta tesis, se desprende que parte
de esa complejidad es debida precisamente a ciertos errores de di-
seño, y que podrían beneficiarse de un diseño mucho más elegante
y, por qué no decirlo, más orientado a objetos, de haberse aplicado

Conclusiones e investigación futura

328

patrones de diseño, factorización de código, pruebas automatizadas
y otras buenas prácticas de diseño de software. Por supuesto, sería
preciso un análisis más exhaustivo de su código fuente para poder
sostener dicha afirmación, y ése es el motivo por el que simplemen-
te se apunta aquí como sugerencia para una futura investigación, ya
que no ha sido demostrado en el cuerpo de la tesis (y es algo que, de
hecho, está fuera del ámbito de esta tesis).

Investigación futura

329

330

References
Abella, P. (2009). Generador de plantillas del módulo Template Layout

de CSS3. (Undergraduate thesis, Escuela Universitaria de In-
geniería Técnica en Informática de Oviedo (EUITIO),
University of Oviedo).

Acebal, C., Rodríguez, M., García, M., Cueva, J. M., & Labra, J. E.
(2006). Extensión del estándar CSS3 que permita la adaptación mul-
tidispositivo de contenidos web. (Technical Report). Gijón, Spain:
CTIC Foundation.

Acebal, C., F., Cueva, J., M., & Izquierdo, R. (2003). Usabilidad
como factor clave en el comercio electrónico. In L. Joyanes, M.
González (Eds.) Libro de actas del II Congreso Internacional de So-
ciedad de la Información y del Conocimiento (CISIC’03) (Tomo 2,
pp. 305–310). España: McGraw-Hill.

Acebal, C. (2001). Lenguaje para el desarrollo ágil de software: Un enfoq-
ue basado en patrones de diseño (Technical Report). Trabajo de
investigación para la obtención de la Suficiencia Investigadora.
Gijón, Spain: Computer Science Department, University of
Oviedo.

Acebal, C., F., Izquierdo, R., & Cueva, J. M. (2001). Good design
principles in a compiler university course. ACM SIGPLAN
Notices, 37(4), 62–73. doi:10.1145/510857.510870

Adams, C., Edwards, J., Heilmann, C., Mahemoff, M., Pehlivanian,
A., Webb, D., & Willison, S. (2007). The art & science of
JavaScript. Collingwood, Australia: SitePoint.

Aho, A., V., Sethi, R., Ullman, & J., D., (1990). Compiladores: Princi-
pios, técnicas y herramientas Wilmington, NC: Addison-Wesley
Iberoamericana. Translated from Compilers: Principles, techniques,
and tools (1986). Reading, MA: Addison-Wesley.

331

http://doi.acm.org/10.1145/510857.510870

Allsopp, J. (2000 April 17). A Dao of web design. A List Apart, 58.
Retrieved from http://www.alistapart.com/articles/dao/

Ambrose, G. , & Harris, P. (2008). Grids. Laussanne, Switzerland:
AVA Publishing.

Ambrose, G. , & Harris, P. (2005). Layout. Laussanne, Switzerland:
AVA Publishing.

Apple. (2010, January 20) Debugging your website. In Safari
Developer Center. Retrieved from http://developer.apple.com/
safari/library/documentation/AppleApplications/
Conceptual/Safari_Developer_Guide/
DebuggingYourWebsite/DebuggingYourWebsite.html

Baekdal, T. (2006, October 24). Actual browser sizes [Web log
message]. Retrieved from http://www.baekdal.com/reports/
actual-browser-sizes/

Baron, D. (2008, November 18). Faster HTML and CSS: Layout
engine internals for web developers [Video file]. Google Tech
Talks. Retrieved from http://www.youtube.com/watch?v
=a2_6bGNZ7bA

Baron, D. (2007, November 14). More precise definitions of intrinsic
widths and table layout. Retrieved from http://dbaron.org/css/
intrinsic/

Baron, D. (2006a, December 14). Mozilla’s layout engine [HTML
slides]. Retrieved from http://www.mozilla.org/newlayout/
doc/layout-2006-12-14/master.xhtml

Baron, D. (2006b, May). Layout algorithm improvements for web
user interfaces. In Browser technology. Session at the XTech 2006
Conference, Amsterdam, The Netherlands. Retrieved from
http://xtech06.usefulinc.com/schedule/paper/146

Baron, D. (2003, January 9). Thursday 2003-01-09 [Web log mes-
sage]. Retrieved from http://dbaron.org/log/2003-01
#l20030109

332

http://www.alistapart.com/articles/dao/
http://developer.apple.com/safari/library/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://developer.apple.com/safari/library/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://developer.apple.com/safari/library/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://developer.apple.com/safari/library/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://www.baekdal.com/reports/actual-browser-sizes/
http://www.baekdal.com/reports/actual-browser-sizes/
http://www.youtube.com/watch?v=a2_6bGNZ7bA
http://www.youtube.com/watch?v=a2_6bGNZ7bA
http://dbaron.org/css/intrinsic/
http://dbaron.org/css/intrinsic/
http://www.mozilla.org/newlayout/doc/layout-2006-12-14/master.xhtml
http://www.mozilla.org/newlayout/doc/layout-2006-12-14/master.xhtml
http://xtech06.usefulinc.com/schedule/paper/146
http://dbaron.org/log/2003-01#l20030109
http://dbaron.org/log/2003-01#l20030109

Bernard, M., Fernandez, M., & Hull, S. (2002, July). The effects of
line length on children and adults’ online reading performance.
Usability News, 4(2). Retrieved from
http://psychology.wichita.edu/surl/usabilitynews/42/
text_length.asp

Berners-Lee, T. (1999). Weaving the web: The original design and ulti-
mate destiny of the World Wide Web, by its inventor. New York, NY:
HarperCollins Publishers.

Berners-Lee, T. (2007, March 1). Digital future of the United
States: Part I – The future of the World Wide Web. Testimony
before the United States House of Representatives (Commit-
tee on Energy and Commerce). Retrieved from
http://energycommerce.house.gov/index.php?option
=com_content&view=article&id=291&catid=32&Itemid=58

Berners-Lee, T. (1993). Hypertext Markup Language (HTML): A rep-
resentation of textual information and metaInformation for retrieval
and interchange (IETF Internet Draft). Retrieved from
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt

Berners-Lee, T. (1991). HTML design constraints. Retrieved from
http://www.w3.org/MarkUp/HTMLConstraints.html

Berry, J. D. (Ed.) (2004). Contemporary newspaper design. New York,
NY: Mark Batty Publisher.

Bos, B., & Acebal, C. (2006, May). CSS Advanced Layout. In B.
Bos (Chair), Style and layout: Key successes to create interoperable
web pages. Session conducted at the 15th International World
Wide Web Conference (WWW’06), Edinburgh, Scotland.
Slides retrieved from http://www.w3.org/2006/05/
w3c-track.html

Bos, G. (1993). Rapid user interface development with the script language
Gist. (Doctoral dissertation, Rÿksuniversiteit Groningen).
Retrieved from http://www.w3.org/People/Bos/

333

http://psychology.wichita.edu/surl/usabilitynews/42/text_length.asp
http://psychology.wichita.edu/surl/usabilitynews/42/text_length.asp
http://energycommerce.house.gov/index.php?option=com_content&view=article&id=291&catid=32&Itemid=58
http://energycommerce.house.gov/index.php?option=com_content&view=article&id=291&catid=32&Itemid=58
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/MarkUp/HTMLConstraints.html
http://www.w3.org/Talks/2006/0526-CSS-WWW2006/
http://www.w3.org/2006/05/w3c-track.html
http://www.w3.org/2006/05/w3c-track.html
http://www.w3.org/People/Bos/

Bos, B. (2009, April 2). CSS3 Template Layout Module (W3C
Working Draft). Retrieved from http://www.w3.org/TR/2009
/WD-css3-layout-20090402/

Bos, B. (2007a, August 9). CSS3 Advanced Layout (W3C Working
Draft). Retrieved from http://www.w3.org/TR/2007/
WD-css3-layout-20070809

Bos, B. (2007b, August 9). CSS basic box model (W3C Working
Draft). Retrieved from http://www.w3.org/TR/2007/
WD-css3-box-20070809

Bos, B. (2005, December 15). CSS3 Advanced Layout (W3C
Working Draft). Retrieved from http://www.w3.org/TR/2005
/WD-css3-layout-20051215/

Bos, B., Çelik, T., Hickson, I., & Lie, H. W., (2009, September 8).
Cascading Style Sheets Level 2 Revision 1 (W3C Candidate
Recommendation). Retrieved from http://www.w3.org/TR/
2009/CR-CSS2-20090908/

Bos, B., Lie, H. W., Lilley, C., & Jacobs, I. (1998, May 12). Cascad-
ing Style Sheets Level 2 (W3C Recommendation). Retrieved
from http://www.w3.org/TR/1998/REC-CSS2-19980512/

Bowman, D. (2003, December 15). On fixed vs. liquid design
[Web log message]. Retrieved from http://stopdesign.com/
archive/2003/12/15/fixedorliquid.html

Bowman, D. (2004, September 3). Liquid bleach [Web log mes-
sage]. Retrieved from http://stopdesign.com/archive/2004/
09/03/liquid-bleach.html

Braganza, C., Marriott, K., Moulder, P., Wybrow, M., & Dwyer, T.
(2009). Scrolling behaviour with single- and multi-column lay-
out. In Proceedings of the 18th international Conference on World
Wide Web (WWW’09) (pp. 831–840). New York, NY: ACM.
doi:10.1145/1526709.1526821

Brahmachari, S. (2000, February 4). Graphics in advertising (part
III): The main function of graphic design [Web log message].

334

http://www.w3.org/TR/2009/WD-css3-layout-20090402/
http://www.w3.org/TR/2009/WD-css3-layout-20090402/
http://www.w3.org/TR/2007/WD-css3-layout-20070809/
http://www.w3.org/TR/2007/WD-css3-layout-20070809/
http://www.w3.org/TR/2007/WD-css3-box-20070809/
http://www.w3.org/TR/2007/WD-css3-box-20070809/
http://www.w3.org/TR/2005/WD-css3-layout-20051215/
http://www.w3.org/TR/2005/WD-css3-layout-20051215/
http://www.w3.org/TR/2009/CR-CSS2-20090908/
http://www.w3.org/TR/2009/CR-CSS2-20090908/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://stopdesign.com/archive/2003/12/15/fixedorliquid.html
http://stopdesign.com/archive/2003/12/15/fixedorliquid.html
http://stopdesign.com/archive/2004/09/03/liquid-bleach.html
http://stopdesign.com/archive/2004/09/03/liquid-bleach.html
http://doi.acm.org/10.1145/1526709.1526821

Retrieved from http://www.suite101.com/article.cfm/
advertising/32969

Bringhurst, R. (2005). The elements of typographic style (3rd ed.).
Vancouver, BC: Hartley & Marks, Publishers.

Brailsford, D. F. (1988). Electronic publishing and computer scien-
ce. Electronic Publishing, 0(January 1988), 13–21.

Brown, F. C. (1921). Letters & lettering: A treatise with 200 examples.
Boston: Bates & Guild Company. Also available at
http://www.gutenberg.org/files/20590/20590-h/
20590-h.htm (Project Gutenberg).

Budd, A. (2004, May 12). An objective look at table based vs. CSS
based design [Web log message]. Retrieved from
http://www.andybudd.com/archives/2004/05/
an_objective_look_at_table_based_vs_css_based_design/

Budd, A. (2003, November 23). No margin for error [Web log
message]. Retrieved from http://www.andybudd.com/
archives/2003/11/no_margin_for_error/

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal,
M. (1996). Pattern-oriented software architecture: A system of pat-
terns. Chichester, England: John Wiley & Sons.

Byous, J. (2003, April). Java Technology: The Early Years.
Retrieved from http://java.sun.com/features/1998/05/
birthday.html

Cabal, E. J. (2009). Extensión en JavaScript que incorpora el Advanced
Layout Module de CSS3 a los navegadores web actuales. (Master’s
thesis, Escuela Politécnica Superior de Ingenieros de Gijón
(EPSIG), University of Oviedo).

Cabal, E. J. (2006). Adaptación de los estándares web para dispositivos
móviles. (Undergraduate thesis, Escuela Universitaria de Ingeni-
ería Técnica en Informática de Oviedo (EUITIO), University
of Oviedo).

335

http://www.suite101.com/article.cfm/advertising/32969
http://www.suite101.com/article.cfm/advertising/32969
http://www.gutenberg.org/files/20590/20590-h/20590-h.htm
http://www.gutenberg.org/files/20590/20590-h/20590-h.htm
http://www.andybudd.com/archives/2004/05/an_objective_look_at_table_based_vs_css_based_design/
http://www.andybudd.com/archives/2004/05/an_objective_look_at_table_based_vs_css_based_design/
http://www.andybudd.com/archives/2003/11/no_margin_for_error/
http://www.andybudd.com/archives/2003/11/no_margin_for_error/
http://java.sun.com/features/1998/05/birthday.html
http://java.sun.com/features/1998/05/birthday.html

Caldwell, B., Cooper, M., Reid, L., G., & Vanderheiden, G., (2008,
December 8). Techniques for WCAG 2.0 (W3C Note).
Retrieved from http://www.w3.org/TR/2008/
NOTE-WCAG20-TECHS-20081211/

Cederholm, D. (2008). Bulletproof web design: Improving flexibility and
protecting against worst-case scenarios with XHTML and CSS (2nd
ed.). Berkeley, CA: New Riders.

Cederholm, D. (2004, January 9). Faux columns. A List Apart, 167.
Retrieved from http://www.alistapart.com/articles/
fauxcolumns/

Çelik, T. (2004, September 6). Undoing html.css and using debug
scaffolding [Web log message]. Retrieved from
http://tantek.com/log/2004/09.html#d06t2354

Century Software (2009). ViewML [Computer software]
Retrieved from http://www.pixil.org/

Chen, P., & Harrison, M. A. (1988). Multiple representation docu-
ment development. Computer, 21(1), 15–31.

Chromatic (2008, April 13). 13 reasons why CSS is superior to
tables in website design [Web log message]. Retrieved from
http://www.chromaticsites.com/blog/
13-reasons-why-css-is-superior-to-tables-in-website-design/

Chisholm, W., Vanderheiden, G., & Jacobs, I., (1999, May 5). Web
Content Accessibility Guidelines 1.0 (W3C Recommenda-
tion). Retrieved from http://www.w3.org/TR/WCAG10/

Chisholm, W., Vanderheiden, G., & Jacobs, I., (2000, November
6). Techniques for Web Content Accessibility Guidelines 1.0
(W3C Note). Retrieved from http://www.w3.org/TR/
WCAG10-TECHS/

Chisholm, W., Vanderheiden, G., & Jacobs, I., (2000, November
6). HTML Techniques for Web Content Accessibility
Guidelines 1.0 (W3C Note). Retrieved from
http://www.w3.org/TR/WCAG10-HTML-TECHS/

336

http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/
http://www.w3.org/TR/2008/NOTE-WCAG20-TECHS-20081211/
http://www.alistapart.com/articles/fauxcolumns/
http://www.alistapart.com/articles/fauxcolumns/
http://tantek.com/log/2004/09.html#d06t2354
http://www.pixil.org/
http://www.chromaticsites.com/blog/13-reasons-why-css-is-superior-to-tables-in-website-design/
http://www.chromaticsites.com/blog/13-reasons-why-css-is-superior-to-tables-in-website-design/
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10-TECHS/
http://www.w3.org/TR/WCAG10-TECHS/
http://www.w3.org/TR/WCAG10-HTML-TECHS/

Clark, P. (2008). Content management and the separation of
presentation and content. Technical Communication Quarterly,
17(1), 35–60.

Clarke, A., & Acebal, C. (2007). Advanced Layout. In Transcending
CSS: The fine art of web design (pp. 345–357). Berkeley, CA: New
Riders.

Clarke, A. (2007a). Transcending CSS: The fine art of web design.
Berkeley, CA: New Riders.

Clarke, A., (2007b). Designing for outside the box. In Web standar-
ds creativity: Innovations in web design with XHTML, CSS, and DOM
scripting (pp. 78–107). Berkeley, CA: friendsof.

Coombs, J. H., Renear, A. H., & DeRose, S. J. (1987). Markup sys-
tems and the future of scholarly text processing. Communica-
tions of the ACM, 30(11), 933–947. doi:10.1145/32206.32209

Crockford, D. (2008). JavaScript: The good parts. Sebastopol, CA:
O’Reilly Media.

Crockford, D. (n.d.). JavaScript [Several essays and presentations].
Retrieved from http://javascript.crockford.com/

Crockford, D. (2001). JavaScript: The World’s most misunder-
stood programming language. Retrieved from
http://javascript.crockford.com/javascript.html

Cullen, K. (2005). Layout workbook. Gloucester, MA : Rockport
Publishers.

Deveria, A. (2009, April 23). Ready for use: CSS3 Template Lay-
out [Web log message]. Retrieved from http://a.deveria.com/
?p=236

Edwards, D. ie7-js (Version 2.1 beta 2). (2010, February). [Com-
puter software] Retrieved from http://code.google.com/p/
ie7-js/

337

http://doi.acm.org/10.1145/32206.32209
http://javascript.crockford.com/
http://javascript.crockford.com/javascript.html
http://a.deveria.com/?p=236
http://a.deveria.com/?p=236
http://code.google.com/p/ie7-js/
http://code.google.com/p/ie7-js/

Edwards, D. IE7 (Version 0.9 alpha). (2005, August 19). [Com-
puter software] Retrieved from http://dean.edwards.name/
weblog/2005/09/ie7-09

Evans, P. (2006). Exploring publication design. Clifton Park, NY:
Thomson Delmar Learning.

Firebug (Version 1.5.2). (2010, February). [Computer software]
Retrieved from http://getfirebug.com/

Fisher, D. (2009, June 2). Exploring Chrome internals [Video file].
In Google I/O 2009. Retrieved from http://www.youtube.com
/watch?v=Naol_TPPPL0

Flanagan, D. (2006). JavaScript: The definitive guide (5th ed.). Se-
bastopol, CA: O’Reilly Media.

Fleishman, G. (1999). Styling the web. Adobe Magazine, Autumn
1999. Retrieved from http://www.adobe.com/products/
adobemag/archive/autm99na.html

The Flying Saucer Project (Release 8). (2009). [Computer soft-
ware] Retrieved from https://xhtmlrenderer.dev.java.net/

Furman, S., & Isaacs, S. (1997, January 31). Positioning HTML
elements with Cascading Style Sheets (W3C Working Draft).
Retrieved from http://www.w3.org/TR/
WD-positioning-970131

Furuta, R., Quint, V., & André, J. (1988). Interactively editing
structured documents. Electronic Publishing, 1(1), 19–44.

Gamma, E. , Helm, R., Johnson, R., & Vlissides, J. M. (1995).
Design patterns: Elements of reusable object-oriented software. Read-
ing, MA: Addison Wesley Longman.

Gillenwater, M. Z. (2009). Flexible web design Berkeley, CA: New
Riders.

Goldfarb, C., F. (1981). A generalized approach to document
markup. ACM SIGPLAN Notices, 16(6), 68–73. doi:10.1145/
872730.806456

338

http://dean.edwards.name/weblog/2005/09/ie7-09/
http://dean.edwards.name/weblog/2005/09/ie7-09/
http://getfirebug.com/
http://www.youtube.com/watch?v=Naol_TPPPL0
http://www.youtube.com/watch?v=Naol_TPPPL0
http://www.adobe.com/products/adobemag/archive/autm99na.html
http://www.adobe.com/products/adobemag/archive/autm99na.html
https://xhtmlrenderer.dev.java.net/
http://www.w3.org/TR/WD-positioning-970131
http://www.w3.org/TR/WD-positioning-970131
http://doi.acm.org/10.1145/872730.806456
http://doi.acm.org/10.1145/872730.806456

Graham, L. (2008). Gestalt theory in interactive media design.
Journal of Humanities & Social Sciences, 2(1), 1–12.

Grier, C. King, S. T., & Wallach, D. S. (2009, May). How I learned
to stop worrying and love plugins. Web 2.0 Security and Pri-
vacy. Oakland, CA. Retrieved from http://w2spconf.com/
2009/

Hicksdesign (2004, May 20). 3D CSS Box Model [Web log mes-
sage]. Retrieved from http://hicksdesign.co.uk/journal/
3d-css-box-model

Harmes, R., & Diaz, D. (2008). Pro JavaScript design patterns. Berke-
ley, CA: Apress.

Holzschlag, M. E. (2005a, December 19). Thinking outside the
grid. A List Apart, 209. Retrieved from
http://www.alistapart.com/articles/outsidethegrid

Holzschlag, M. E. (2005b, April). The more things stay the same,
the more they change. Design In-Flight, 4, 28–33.

Hurst, N., Li, W., & Marriott, K. (2009). Review of automatic doc-
ument formatting. In Proceedings of the 9th ACM Symposium on
Document Engineering (DocEng’09) (pp. 99–108). New York, NY:
ACM. doi:10.1145/1600193.1600217

Jacobs, I., & Walsh, N. (2004, December 15). Architecture of the
World Wide Web, volume one (W3C Recommendation).
Retrieved from http://www.w3.org/TR/2004/
REC-webarch-20041215/

Izquierdo, R., Acebal, C. F., & Cueva, J. M. (2002). An object ori-
ented entity relationship model framework (ERM). In A. M.
Moreno, R. Lee, N. Juristo, & B. Boehm (Eds.) 3rd ACIS Inter-
national Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD’02) (pp.
353–360). Madrid, Spain.

Jobs, S. (2003, November 30). The guts of a new machine. Inter-
view with Walker R. The New York Times. Retrieved from

339

http://w2spconf.com/2009/
http://w2spconf.com/2009/
http://hicksdesign.co.uk/journal/3d-css-box-model
http://hicksdesign.co.uk/journal/3d-css-box-model
http://www.alistapart.com/articles/outsidethegrid
http://doi.acm.org/10.1145/1600193.1600217
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2004/REC-webarch-20041215/

http://www.nytimes.com/2003/11/30/magazine/
30IPOD.htm

jQuery JavaScript Library (Version 1.4.2). (2010, January). [Com-
puter software] Retrieved from http://jquery.com/

Keith, J. (2005). DOM scripting. Berkeley, CA: friendsof.

Keith, J. (2006). Pro JavaScript techniques. Berkeley, CA: Apress.

Keith, J. (2003, December 15). The Long Debate [Web log mes-
sage]. Retrieved from http://adactio.com/journal/750

King, A. B. (2008). Website optimization: Speed, search engine & conver-
sion rate secrets. Sebastopol, CA: O’Reilly Media.

Korpela, J. (1998). Lurching Toward Babel: HTML, CSS, and
XML. Computer, 31(7), 103–104, 106. doi:10.1109/2.689682

Koch, P. (2005, March 8). Clearing floats [Web log message].
Retrieved from http://www.quirksmode.org/blog/archives/
2005/03/clearing_floats.html

Krug, S. (2000). Don’t make me think! A common sense approach to web
usability. Indianapolis, IN: Que.

Levering, R., & Cutler, M., (2006). The portrait of a common
HTML web page. In Proceedings of the 2006 ACM Symposium on
Document Engineering (DocEng’06) (pp. 198–204). New York,
NY: ACM. doi:10.1145/1166160.116621

Lie, H. W. (2007, August 28). CSS @ ten: The next big thing. A List
Apart, 244. Retrieved from http://www.alistapart.com/
articles/cssatten

Lie, H. W. (2005). Cascading Style Sheets. (Doctoral dissertation, Fa-
culty of Mathematics and Natural Sciences, University of
Oslo). Retrieved from http://people.opera.com/howcome/
2006/phd/

Lie, H. W., & Bos, B. (2005). Cascading Style Sheets: Designing for the
web (3rd ed.). Upper Saddle River, NY: Pearson Education.

340

http://www.nytimes.com/2003/11/30/magazine/30IPOD.html
http://www.nytimes.com/2003/11/30/magazine/30IPOD.html
http://jquery.com/
http://adactio.com/journal/750
http://doi.ieeecomputersociety.org/10.1109/2.689682
http://www.quirksmode.org/blog/archives/2005/03/clearing_floats.html
http://www.quirksmode.org/blog/archives/2005/03/clearing_floats.html
http://doi.acm.org/10.1145/1166160.116621
http://www.alistapart.com/articles/cssatten
http://www.alistapart.com/articles/cssatten
http://people.opera.com/howcome/2006/phd/
http://people.opera.com/howcome/2006/phd/

Lie, H. W., & Saarela, J. (1998). Multipurpose Web publishing us-
ing HTML, XML, and CSS. Communications of the ACM,
42(10), 95–101. doi:10.1145/317665.317681

Lie, H. W., & Bos, B. (1996, December 17). Cascading Style Sheets
Level 1 (W3C Recommendation). Retrieved from
http://www.w3.org/TR/2008/REC-CSS1-20080411

Livingstone, D. (n.d.). Interactive CSS Box Model demo [Web log
message]. Retrieved from http://www.redmelon.net/tstme/
box_model/

Lynch, P. J., & Horton, S. (2009). Visual design principles. In Web
style guide (3rd ed.), chapter 7: Page design. Retrieved from
http://www.webstyleguide.com/wsg3/7-page-design/
4-visual-design-principles.html

Lynch, P. J., & Horton, S. (2009). Presenting information architec-
ture. In Web style guide (3rd ed.), chapter 3: Information archi-
tecture. Retrieved from http://webstyleguide.com/wsg3/
3-information-architecture/4-presenting-information.html

Marcotte, E. (2003, December 15). Further Roasting the Chestnut
[Web log message]. Retrieved from http://sidesh0w.com/
weblog/2003/12/15/further_roasting_the_chestnut/

McWade, J. (2009, May 19). What is graphic design? [Web log
message] Retrieved from http://www.mcwade.com/
DesignTalk/2009/05/what-is-graphic-design/

Merikallio, B., & Pratt, A. (2003). Why tables for layout is stupid:
Problems defined, solutions offered. Retrieved from
http://www.hotdesign.com/seybold/

Meyer, E. (2008a, February 12). CSS tools: Reset CSS [Web log
message]. Retrieved from http://meyerweb.com/eric/tools/
css/reset/

Meyer, E. (2008b, January 15). Resetting again [Web log mes-
sage]. Retrieved from http://meyerweb.com/eric/thoughts/
2008/01/15/resetting-again/

341

http://doi.acm.org/10.1145/317665.317681
http://www.w3.org/TR/2008/REC-CSS1-20080411
http://www.redmelon.net/tstme/box_model/
http://www.redmelon.net/tstme/box_model/
http://www.webstyleguide.com/wsg3/7-page-design/4-visual-design-principles.html
http://www.webstyleguide.com/wsg3/7-page-design/4-visual-design-principles.html
http://webstyleguide.com/wsg3/3-information-architecture/4-presenting-information.html
http://webstyleguide.com/wsg3/3-information-architecture/4-presenting-information.html
http://sidesh0w.com/weblog/2003/12/15/further_roasting_the_chestnut/
http://sidesh0w.com/weblog/2003/12/15/further_roasting_the_chestnut/
http://www.mcwade.com/DesignTalk/2009/05/what-is-graphic-design/
http://www.mcwade.com/DesignTalk/2009/05/what-is-graphic-design/
http://www.hotdesign.com/seybold/
http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/thoughts/2008/01/15/resetting-again/
http://meyerweb.com/eric/thoughts/2008/01/15/resetting-again/

Meyer, E. (2007a). CSS: The definitive guide (3rd ed.). Sebastopol,
CA: O’Reilly Media.

Meyer, E. (2007b, April 18). Reset reasoning [Web log message].
Retrieved from http://meyerweb.com/eric/thoughts/2007/
04/18/reset-reasoning/

Meyer, E. (2007c, April 14). Reworked reset [Web log message].
Retrieved from http://meyerweb.com/eric/thoughts/2007/
04/14/reworked-reset/

Meyer, E. (2007d, April 12). Reset styles [Web log message].
Retrieved from http://meyerweb.com/eric/thoughts/2007/
04/12/reset-styles/

Meyer, E. (2004a, November 3). Uncollapsing margins [Web log
message]. Retrieved from http://complexspiral.com/
publications/uncollapsing-margins/

Meyer, E. (2004b, September 3). Sliding faux columns [Web log
message]. Retrieved from http://meyerweb.com/eric/
thoughts/2004/09/03/sliding-faux-columns/

Meyer, E. (2004c, July 24). Floats don’t suck if you use them right
[Web log message]. Retrieved from http://meyerweb.com/
eric/thoughts/2004/07/17/
floats-dont-suck-if-you-use-them-right/

Meyer, E. (2003a, October 15). The incomplete divorce [Web log
message]. Retrieved from http://www.meyerweb.com/eric/
thoughts/200310.html#t200310015

Meyer, E. (2003b, August 25). Containing floats [Web log mes-
sage]. Retrieved from http://complexspiral.com/publications/
containing-floats/

Microsoft. (2009a). Introduction to Windows Presentation
Foundation. In Windows Presentation Foundation: Getting started.
Retrieved from MSDN Library website:
http://msdn.microsoft.com/library/aa970268.aspx

342

http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/
http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/
http://meyerweb.com/eric/thoughts/2007/04/14/reworked-reset/
http://meyerweb.com/eric/thoughts/2007/04/14/reworked-reset/
http://meyerweb.com/eric/thoughts/2007/04/12/reset-styles/
http://meyerweb.com/eric/thoughts/2007/04/12/reset-styles/
http://complexspiral.com/publications/uncollapsing-margins/
http://complexspiral.com/publications/uncollapsing-margins/
http://meyerweb.com/eric/thoughts/2004/09/03/sliding-faux-columns/
http://meyerweb.com/eric/thoughts/2004/09/03/sliding-faux-columns/
http://meyerweb.com/eric/thoughts/2004/07/17/floats-dont-suck-if-you-use-them-right/
http://meyerweb.com/eric/thoughts/2004/07/17/floats-dont-suck-if-you-use-them-right/
http://meyerweb.com/eric/thoughts/2004/07/17/floats-dont-suck-if-you-use-them-right/
http://www.meyerweb.com/eric/thoughts/200310.html#t200310015
http://www.meyerweb.com/eric/thoughts/200310.html#t200310015
http://complexspiral.com/publications/containing-floats/
http://complexspiral.com/publications/containing-floats/
http://msdn.microsoft.com/library/aa970268.aspx

Microsoft. (2009b). XAML. In Windows Presentation Foundation:
WPF fundamentals. Retrieved from MSDN Library website:
http://msdn.microsoft.com/library/ms747122.aspx

Microsoft. (2009c). The layout system. In Windows Presentation
Foundation: The layout system). Retrieved from MSDN Library
website: http://msdn.microsoft.com/library/ms745058.aspx

Microsoft. (2009d). Debugging HTML and CSS with the
Developer Tools. Retrieved from MSDN Library website:
http://msdn.microsoft.com/library/dd565627(VS.85).aspx

Mills, C., B. , & Weldon, L. J. (1987). Reading text from computer
screens. ACM Computing Surveys, 19(4), 329–357. doi:10.1145/
45075.46162

Mozilla. (2009a) Source code directories overview. In Mozilla
Developer Center. Retrieved from https://developer.mozilla.org/
en/Source_code_directories_overview

Mozilla. (2009b) XPCOM. In Mozilla Developer Center. Retrieved
from https://developer.mozilla.org/en/XPCOM

Mozilla. (2009c) Adding a new style property. In Mozilla Developer
Center. Retrieved from https://developer.mozilla.org/en/
Adding_a_new_style_property

Mozilla. (2009d). XUL Reference. Retrieved from Mozilla Developer
Center website: https://developer.mozilla.org/en/
XUL_Reference

Mozilla. (2007, August 15). The Box Model. In XUL Tutorial.
Retrieved from Mozilla Developer Center website:
https://developer.mozilla.org/en/XUL_Tutorial/
The_Box_Model

Mullenweg, M. (2003, December 11). Death of Flexible Width
Designs [Web log message]. Retrieved from http://ma.tt/2003
/12/death-of-flexible-width-designs/

343

http://msdn.microsoft.com/library/ms747122.aspx
http://msdn.microsoft.com/library/ms745058.aspx
http://msdn.microsoft.com/en-gb/library/dd565627(VS.85).aspx
http://doi.acm.org/10.1145/45075.46162
http://doi.acm.org/10.1145/45075.46162
https://developer.mozilla.org/en/Source_code_directories_overview
https://developer.mozilla.org/en/Source_code_directories_overview
https://developer.mozilla.org/en/XPCOM
https://developer.mozilla.org/en/Adding_a_new_style_property
https://developer.mozilla.org/en/Adding_a_new_style_property
https://developer.mozilla.org/en/XUL_Reference
https://developer.mozilla.org/en/XUL_Reference
https://developer.mozilla.org/en/XUL_Tutorial/The_Box_Model
https://developer.mozilla.org/en/XUL_Tutorial/The_Box_Model
http://ma.tt/2003/12/death-of-flexible-width-designs/
http://ma.tt/2003/12/death-of-flexible-width-designs/

Müller-Brockmann, J. (1971). Gestaltungsprobleme des grafikers/The
graphic artist and his design problems/Les problemes d’un artiste
graphique. Teufen AR, Switzerland: Verlag Arthur Niggli.

Müller-Brockmann, J. (1981). Grid systems in graphic design/Raster
systeme für die visuele gestaltung. Sulgen, Switzerland: Arthur Nig-
gli.

Nielsen, J. (2000a). Usabilidad: Diseño de sitios web. Madrid, Spain:
Pearson Educación. Translated from Designing web usability: The
practice of simplicity (1999). Thousand Oaks, CA: New Riders
Publishing.

Nielsen, J. (2009a, July 20). Mobile usability. Alertbox. Retrieved
from http://www.useit.com/alertbox/mobile-usability.html

Nielsen, J. (2009b, February 17). Mobile web 2009 = desktop web
1998. Alertbox. Retrieved from http://www.useit.com/alertbox
/mobile-2009.html

Nielsen, J. (2006a, July 31). Screen Resolution and Page Layout.
Alertbox. Retrieved from http://www.useit.com/alertbox/
screen_resolution.html

Nielsen, J. (2006b, April 17). F-shaped pattern for reading web
content. Alertbox. Retrieved from http://www.useit.com/
alertbox/reading_pattern.html

Nielsen, J. (2005, July 11). Scrolling and scrollbars. Alertbox.
Retrieved from http://www.useit.com/alertbox/
20050711.html

Nielsen, J. (2000, October 29). Flash: 99% bad. Alertbox. Retrieved
from http://www.useit.com/alertbox/20001029.html

Nielsen, J. (1997a, October 1). How users read on the web. Alert-
box. Retrieved from http://www.useit.com/alertbox/
9710a.html

Nielsen, J. (1997b, July 1). Effective use of style sheets. Alertbox.
Retrieved from http://www.useit.com/alertbox/9707a.html

344

http://www.useit.com/alertbox/mobile-usability.html
http://www.useit.com/alertbox/mobile-2009.html
http://www.useit.com/alertbox/mobile-2009.html
http://www.useit.com/alertbox/screen_resolution.html
http://www.useit.com/alertbox/screen_resolution.html
http://www.useit.com/alertbox/9710a.html
http://www.useit.com/alertbox/9710a.html
http://www.useit.com/alertbox/20050711.html
http://www.useit.com/alertbox/20050711.html
http://www.useit.com/alertbox/20001029.html
http://www.useit.com/alertbox/9710a.html
http://www.useit.com/alertbox/9710a.html
http://www.useit.com/alertbox/9707a.html

O’Brien, P. (n.d.). http://pmob.co.uk/

Olsson, T., & O’Brien, P. (2008). The ultimate CSS reference. Colling-
wood, Australia: SitePoint.

Mills, C. Introduction to Opera Dragonfly (2008, May 6). [Web
log message]. Retrieved from http://dev.opera.com/articles/
view/introduction-to-opera-dragonfly/

van Ossenbruggen, J., & Hardman, L. (2002, May). Smart style on
the semantic web. In Semantic Web Workshop. Workshop at the
11th International World Wide Web Conference (WWW’02),
Hawaii, USA. Retrieved from
http://semanticweb2002.aifb.uni-karlsruhe.de/index.htm

van Ossenbruggen, J. (2001). Processing structured hypermedia: A mat-
ter of style. (Doctoral dissertation, Vrije Universiteit). Retrieved
from http://homepages.cwi.nl/~jrvosse/thesis/

Pederick, C. (2009, June). Web Developer Toolbar (Version
1.1.8). [Computer software] Retrieved from
http://chrispederick.com/work/web-developer/

Poggenpohl, S. H. (Ed.). (1993). What is graphic design? In AIGA
Career Guide. Retrieved from http://www.aiga.org/content.cfm
/guide-whatisgraphicdesign

Prototype JavaScript Framework (Version 1.6.1). (2009, Septem-
ber). [Computer software] Retrieved from
http://www.prototypejs.org/

Project Seven (n.d.). CSS Layout Magic. [Computer software]
Retrieved from http://www.projectseven.com/products/
templates/pagepacks/cssmagic/index.htm

Raggett, D., Le Hors, A., & Jacobs, I. (1999, December 24).
HTML 4.01 Specification (W3C Recommendation). Retrieved
from http://www.w3.org/TR/html4/

345

http://pmob.co.uk/
http://dev.opera.com/articles/view/introduction-to-opera-dragonfly/
http://dev.opera.com/articles/view/introduction-to-opera-dragonfly/
http://semanticweb2002.aifb.uni-karlsruhe.de/index.htm
http://homepages.cwi.nl/~jrvosse/thesis/
http://chrispederick.com/work/web-developer/
http://www.aiga.org/content.cfm/guide-whatisgraphicdesign
http://www.aiga.org/content.cfm/guide-whatisgraphicdesign
http://www.prototypejs.org/
http://www.projectseven.com/products/templates/pagepacks/cssmagic/index.htm
http://www.projectseven.com/products/templates/pagepacks/cssmagic/index.htm
http://www.w3.org/TR/html4/

Raggett, D., Le Hors, A., & Jacobs, I., (1998, April 24). HTML 4.0
Specification (W3C Recommendation, revised). Retrieved
from http://www.w3.org/TR/1998/REC-html40-19980424/

Raggett, D., Le Hors, A., & Jacobs, I., (1997, December 18).
HTML 4.0 Specification (W3C Recommendation). Retrieved
from http://www.w3.org/TR/REC-html40-971218/

Raggett, D. (1997, January 14). HTML 3.2 Reference Specification
(W3C Recommendation). Retrieved from http://www.w3.org
/TR/REC-html32

Ragget, D. (1996, May). HTML) tables (IETF RFC 1942). Retrieved
from http://www.ietf.org/rfc/rfc1942.txt

Reid, B. K. (1981). Scribe: a document specification language and its
compiler. (Doctoral dissertation, Carnegie Mellon University).

Resig, J. (2009). The DOM Is a Mess [Video file]. In YUI Theath-
er. Retrieved from http://developer.yahoo.com/yui/theater/

Roberts, L. (2007). Grids: Creative solutions for graphic designers.
Hoboken, NY: John Wiley & Sons.

Robinson, A. (2005, October 21). In search of the One True Layout.
Retrieved from http://www.positioniseverything.net/articles/
onetruelayout/

Rodríguez, M. (2007). Implementación de un prototipo visualizador
multinavegador para dar soporte al modelo de maquetación avanzado
CSS3. (Undergraduate thesis, Escuela Universitaria de Ingeni-
ería Técnica en Informática de Gijón (EUITIG), University of
Oviedo).

Rutter, R. (2003, December 15). Fixed Width [Web log message].
Retrieved from http://www.clagnut.com/blog/267/

Samara, T. (2007). Design elements: A graphic style manual. Beberly,
MA: Rockport Publishers.

Sambells, J., & Gustafson, A., (2007). Advanced DOM scripting.
Berkeley, CA: friendsof.

346

http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html32
http://www.ietf.org/rfc/rfc1942.txt
http://developer.yahoo.com/yui/theater/
http://www.positioniseverything.net/articles/onetruelayout/
http://www.positioniseverything.net/articles/onetruelayout/
http://www.clagnut.com/blog/267/

Santa Maria, J. (2005, August 24). A List (taken) Apart. Interview
with Clarke A. And all that Malarkey. Retrieved from
http://www.stuffandnonsense.co.uk/archives/
a_list_taken_apart.html

Savarese, C. (2005, September 26). Introducing the CSS3 multi-
column module. A List Apart, 204. Retrieved from
http://www.alistapart.com/articles/css3multicolumn/

Shaikh, A., D. (2005, July). The effects of line length on reading on-
line news. Usability News, 7(2). Retrieved from
http://www.surl.org/usabilitynews/72/LineLength.asp

Shea, D. (2003). CSS Zen Garden. Retrieved from
http://www.csszengarden.com/

Sol, E. (2008, June 17). Faux absolute positioning. A List Apart,
261. Retrieved from http://www.alistapart.com/articles/
fauxabsolutepositioning/

Stain, B. (2000, November 17). Separation anxiety: The myth of
the separation of style from content. A List Apart, 89. Retrieved
from http://www.alistapart.com/articles/

Sun (2008). LayoutManager. Retrieved from Java Platform SE 6 API
Documentation website: http://java.sun.com/javase/6/docs/
api/java/awt/LayoutManager.html

Tanaka, S. (2009, February 10). How much longer will we design
for 1024? [Web log message]. Retrieved from
http://www.sohtanaka.com/web-design/
how-much-longer-will-we-design-for-1024/

Tondreau, B. (2009). Layout essentials: 100 design principles for using
grids. Beberly, MA: Rockport Publishers.

Walker, A. (2005, February 26). Simple Clearing of Floats [Web
log message]. Retrieved from http://www.sitepoint.com/blogs
/2005/02/26/simple-clearing-of-floats/

347

http://www.stuffandnonsense.co.uk/archives/a_list_taken_apart.html
http://www.stuffandnonsense.co.uk/archives/a_list_taken_apart.html
http://www.alistapart.com/articles/css3multicolumn/
http://www.surl.org/usabilitynews/72/LineLength.asp
http://www.csszengarden.com/
http://www.alistapart.com/articles/fauxabsolutepositioning/
http://www.alistapart.com/articles/fauxabsolutepositioning/
http://www.alistapart.com/articles/
http://java.sun.com/javase/6/docs/api/java/awt/LayoutManager.html
http://java.sun.com/javase/6/docs/api/java/awt/LayoutManager.html
http://www.sohtanaka.com/web-design/how-much-longer-will-we-design-for-1024/
http://www.sohtanaka.com/web-design/how-much-longer-will-we-design-for-1024/
http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/

Walrath, K., Campione, M., Huml, A., & Zakhour, S. (2004). The
JFC Swing tutorial: A guide to constructing GUIs. (2nd ed.). Red-
wood City, CA: Addison Wesley Longman. Also available at
http://java.sun.com/docs/books/tutorial/uiswing/index.html

WebAssist (2009, September). CSS Sculptor (Version 3). [Com-
puter software] Retrieved from http://www.webassist.com/
dreamweaver-extensions/css-sculptor/

WebKit (Nightly Build r43663) [Computer software] (2009, May
13). Retrieved from http://webkit.org/

Website Optimization (2008, April 28). Average web page size
triples since 2003 [Web log message]. Retrieved from
http://www.websiteoptimization.com/speed/tweak/
average-web-page/

Weinschenk, S. (2003, February). Reading text online. UI Design
Newsletter. Retrieved from http://www.humanfactors.com/
downloads/feb03.asp

Weychert, R. (2007). Bridging the type divide: Classic typography
with CSS. In Web standards creativity: Innovations in web design with
XHTML, CSS, and DOM scripting (pp. 156–180) Berkeley, CA:
friendsof.

Whitespace (2003, December 12). Death of Liquid Layouts? [Web
log message]. Retrieved from http://web.archive.org/web/
20031230025612/http://www.9rules.com/whitespace/design
/death_of_liquid_layouts.php

Wilkinson, M. J. (2009, May 7). The line length misconception
[Web log message]. Retrieved from http://www.viget.com/
advance/the-line-length-misconception/

“X-Smiles” (Release 1.2) [Computer software] (2008). Retrieved
from http://www.xsmiles.org/

Yahoo! (2009, September). YUI Library (Version 3) [Computer
software] Retrieved from http://developer.yahoo.com/yui/

348

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://www.webassist.com/dreamweaver-extensions/css-sculptor/
http://www.webassist.com/dreamweaver-extensions/css-sculptor/
http://webkit.org/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.humanfactors.com/downloads/feb03.asp
http://www.humanfactors.com/downloads/feb03.asp
http://web.archive.org/web/20031230025612/http://www.9rules.com/whitespace/design/death_of_liquid_layouts.php
http://web.archive.org/web/20031230025612/http://www.9rules.com/whitespace/design/death_of_liquid_layouts.php
http://web.archive.org/web/20031230025612/http://www.9rules.com/whitespace/design/death_of_liquid_layouts.php
http://www.viget.com/advance/the-line-length-misconception/
http://www.viget.com/advance/the-line-length-misconception/
http://www.xsmiles.org/
http://developer.yahoo.com/yui/

Yahoo! (2009, February). YUI Library: Reset (Version 2.8.0)
[Computer software] Retrieved from
http://developer.yahoo.com/yui/reset

Yank, K., & Adams, C. (2007). Simply JavaScript. Collingwood, Aus-
tralia: SitePoint.

Zakas, N. C. (2005). Professional JavaScript for web developers. Indi-
anapolis, IN: Wiley Publishing.

Zeldman, J., & Marcotte, E. (2010). Designing with web standards
(3rd ed.) Berkeley, CA: New Riders.

Zeldman, J. (2003). Designing with web standards. Indianapolis, IN:
New Riders.

Zeldman, J. (2001, February 16). From table hacks to CSS layout:
A web designer’s journey. A List Apart, 99. Retrieved from
http://www.alistapart.com/articles/journey/

349

http://developer.yahoo.com/yui/reset/
http://www.alistapart.com/articles/journey/

	ALMcss: Separación de estructura y presentación en la web mediante posicionamiento avanzado en CSS
	César Fernández Acebal

	ALMcss: Separación de estructura y presentación en la web mediante posicionamiento avanzado en CSS ALMcss: Separation between Structure and Presentation on the Web with CSS Advanced Layout
	César Fernández Acebal

	Resumen
	Abstract
	Contents
	Acknowledgments
	Introduction
	Origin of This Thesis
	Joining the W3C CSS Working Group
	The Prototype

	Layout
	Separation between Presentation and Content
	Problem Statement
	A Historical Perspective
	Table-based layouts

	Thesis Structure
	Chapter 1. Introduction
	Chapter 2. Separation between Presentation and Content
	Chapter 3. What Layout Is
	Chapter 4. Layout Languages
	Chapter 5. CSS Box and Visual Formatting Models
	Chapter 6. CSS Layout Techniques
	Chapter 7. Case Studies
	Chapter 8. The Problem of Separation between Structure and Layout
	Chapter 9. Proposed Solution: the CSS3 Template Layout Module
	Chapter 10. Demonstration: Case Studies Revisited
	Chapter 11. ALMcss: A JavaScript Implementation of the Template Layout Module
	Chapter 12. A Visual Layout Generator
	Chapter 13. Conclusions and Further Research

	Separation between Presentation and Content
	Introduction
	Structured Documents
	Separation between Presentation and Content on the Web
	The Web as a Universal Platform
	HTML as a Language for Representing Structured Documents
	Old School Tricks
	Presentational Elements
	Use of Tables for Layout
	Why are Tables Bad for Layout?
	Why Are They Used for Layout?

	Cascading Style Sheets

	Conclusions

	What Layout Is
	Introduction
	What Is Graphic Design?
	Typography
	Line Length

	Layout
	Gestalt Principles
	How We Read a Page
	Hierarchy

	Grid Systems
	Elements of a Grid
	Types of grids

	Layout Languages
	Introduction
	User Interface Languages
	XAML
	Layout System Overview
	Layout Controls
	Grids on XAML
	Grid Units

	XUL
	The Box Model

	Graphical Libraries of Programming Languages
	Java Swing
	A Brief Historical Note
	Layout Managers
	GridBagLayout

	Discussion

	CSS Box & Visual Formatting Models
	One Document, Two Representations
	Visual Formatting Model Basis
	Types of Boxes
	Block and Inline Boxes
	Other Types of Boxes

	Box Model Basis
	A Historical Note about Width and Height on the Web
	Box Dimensions
	Margins
	Shorthand Property
	Default Value
	Negative Margins

	Paddings
	Borders
	Width

	Collapsing Margins
	Reset Default Styles

	Floats
	Other Uses of Floats
	Anchoring Text
	Drop Caps

	Float Issues
	A Floated Element Is Taken Out of the Normal Flow
	Clearing Floats
	Clear Property
	Floating the Container
	Using the Overflow Property
	Generated Content

	What Flows Is the Content, Not the Box Itself

	CSS Layout Techniques
	Introduction
	Types of Layouts
	Fixed Layouts
	What resolution?
	Mobile Devices

	Liquid Layouts
	Issues with liquid layouts

	Elastic Layouts
	Hybrid Layouts
	The Long Debate

	Equal‑Height Columns
	Faux Columns
	More Columns
	Sliding Faux Columns

	One True Layout

	Case Studies
	Mismatch between Content Order and Visual Position
	Blog Posts
	Newspaper Headlines

	Floating a Block
	“L”-shape Layouts
	Another Example

	Styling a Definition List
	The Solution, Step by Step
	The List, Unstylish
	Fonts and Colours
	Setting the Dimensions
	Floating the List Elements
	Moving the Elements
	Equal-height Elements

	Conclusions

	Vertical Grid
	General Styles
	Changing the Dimensions of each Module
	Two Columns Module with the Image on the Left
	One Columns and Two Rows, with the Image on the Top
	Moving the Elements

	Conclusions

	The Problem of Separation between Structure and Layout
	Introduction
	CSS Is Not a Layout Language
	The Problem with Floats
	Dependent on the Order of the Content
	It is the Content, and Not the Box, What Flows

	The Problem with Absolute Positioning
	A Note on Page Zooming and Absolute Positioning

	Vertical Grids Are Not Possible
	Mixing Units Is Not Possible
	Extra Markup Is Usually Needed
	There Are Not Content Reordering Mechanisms
	Redesign Is Not Possible
	Is It not Possible? What Does It Happen with CSS Zen Garden?

	Complexity
	Lack of Visual Tools

	Conclusions

	Proposed Solution: The CSS3 Template Layout Module
	Redde Caesari, quae sunt Caesaris
	About the Solution
	Introduction to the Template Layout Module
	Template Definition
	Slots
	Row Heights
	Column Widths
	Explanation of Width Values

	Positioning Content into Slots
	Width Algorithm
	Explanation of Minimum and Preferred Intrinsic Widths

	Height Algorithm
	Detailed Algorithm for Computing Heights
	Computing Single‑Row Slots
	Rows of Equal Height
	Computing Multi‑Row Slots
	Processing again Equal‑Height Rows
	Setting the Height of Slots
	Overall Algorithm

	Slot Pseudoelement
	Vertical Alignment
	Discussion
	Alternative Syntaxes
	Default Widths and Heights
	Using Percentages for Column Widths
	Styling the Slots Themselves
	Equal‑height Columns
	What Properties Must Be Allowed?

	Non‑rectangular Slots

	Demonstration: Case Studies Revisited
	Introduction
	Blog Entries
	Zeldman
	Stuffandnonsense
	Meyerweb
	Mark Boulton
	Stopdesign
	Jason Santa Maria

	News
	Master in Web Engineering
	BIOTinfo Magazine
	Styling a Definition List
	YoDona Magazine
	One True Layout
	A Complete Redesign
	Changing the Layout
	Conclusions

	ALMcss: A JavaScript Implementation of Template Layout Module
	Acknowledgements
	Introduction
	State of the Art
	Changing the Code of an Open Source Browser
	Mozilla Structure of Subdirectories
	Adding a New Style Property
	Too Complex and Poorly Designed Code
	Lack of Documentation
	Conclusions

	Creating a Layout Engine from the Scratch
	Reusing a Layout Engine?
	Another Prototype of This Thesis
	The Java Desktop Version

	Conclusions

	Implementing an Extension of an Existing Browser
	Developing a JavaScript Plugin

	Design of the Prototype
	Architecture of ALMcss
	The Rendering Process

	Parsing the Style Sheet
	Obtaining the Style Sheets
	Parsing the CSS Rules

	Decorating the DOM
	Creation of the Structure
	Creation of HTML Elements for Slots
	Moving Elements into Slots
	Class Structure for Representing Templates

	Resizing
	Positioning

	Conclusions

	A Visual Layout Generator
	Introduction
	User Interface
	Usage Example
	Opening the HTML Document
	Creating a New Template
	Defining Slots
	Arranging the Content into Slots
	Generated Template

	Conclusions

	Conclusions and Further Research
	Review
	Major Contributions
	CSS Is Not a Layout Language
	CSS Is a Low-Level Language
	Implicit vs. Explicit Layout
	Cascading Style Sheets Calls for a Distinction Between Presentation and Layout
	Requirements of CSS Layout
	An Innovative Layout Mechanism is Proposed
	ALMcss: The First Implementation of the CSS3 Template Layout Module
	A Visual Tool for Generating Templates

	Publications and other Stuff
	Publications
	Research Projects
	Awards
	Students’ Works

	Further Research
	More Layout Improvements
	CSS Debuggers
	Applying Design Patterns and other Object Oriented Best Practices to Layout Engine Construction

	Conclusiones e investigación futura
	Repaso
	Principales aportaciones
	CSS no es un lenguaje de maquetación
	CSS es un lenguaje de bajo nivel
	Maquetación implícita frente a maquetación explícita
	Cascading Style Sheets requiere distinguir la maquetación del resto de aspectos de presentación
	Requisitos para un sistema de maquetación en CSS
	Se propone un innovador sistema de maquetación
	ALMcss: La primera implementación del CSS3 Template Layout Module
	Una herramienta visual para generar plantillas

	Publicaciones y otros logros
	Publicaciones
	Proyectos de investigación
	Premios
	Proyectos fin de carrera

	Investigación futura
	Más mejoras de maquetación
	Depuradores CSS
	Aplicar patrones de diseño y otras buenas prácticas orientadas a objetos a la construcción de motores de renderizado

	References

